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Foreword

Understanding Quantum Raffles was inspired by Bananaworld, as the authors
say, but it is very much more than that. My initial aim in writing Bananaworld
was to de-mystify quantum entanglement for non-physicists—as Schrödinger
remarked, ‘the characteristic trait of quantum mechanics, the one that enforces
its entire departure from classical lines of thought.’ I wanted to show that
entanglement is essentially a new sort of nonlocal correlation, explain why
it is puzzling, and point out how it can be used as a resource. The device I
used to exhibit entanglement was the Popescu-Rohrlich nonlocal box, or PR-
box, which I dramatized as a pair of bananas that each acquires one of two
possible tastes when peeled in one of two allowable ways, from the stem end
or the top end. The PR-box correlation is a superquantum correlation but can
be expressed quite simply, without the mathematical machinery of quantum
mechanics. It has all the puzzling features of quantum entanglement and, with
a little poetic license, can even be exploited to show how entanglement works
to enable feats like quantum teleportation, unconditional security in quantum
cryptography, and apparently exponential speed-up in quantum computation.

In spite of the bananas, the book did not turn out to be the sort of thing
you could pick up and enjoy over a beer. So I wrote Totally Random: Why No-
body Understands Quantum Mechanics with my daughter, Tanya Bub. Totally
Random deals with some of the topics discussed in Bananaworld, but in a
way that’s much more accessible and, we hoped, fun to read. We presented the
book as ‘a serious comic on entanglement’—serious because we felt that the
general reader could come away with a real understanding of entanglement:
what it is, what the patriarchs of quantum mechanics have said about it, and
what you can do with it. The authors of Understanding Quantum Raffles—the
three Mikes—have evidently also given a great deal of thought to pedagogical
issues. While some of the discussion, notably Chapter 4, tackles advanced ma-
terial, a major part of the book, especially Chapters 2 and 3, is clearly intended
for the general reader, so if you want to understand what is really new and
interesting about quantum mechanics, this is the book to read.

vii



Draft version, July 30, 2021

viii Foreword

InBananaworld, I brought out the difference between classical and quantum
mechanics by considering to what extent it is possible to simulate a PR-box
correlation with various resources, classical or quantum. Bell’s nonlocality
proof amounts to a demonstration that two separated agents, Alice and Bob,
restricted to classical, and so local resources (effectively what computer scien-
tists call ‘shared randomness’), can achieve an optimal success rate of no more
than 75%. If Alice and Bob are allowed to use quantum resources, entangled
pairs of photons or electrons, they can do better, about 85%. Equipped with
PR-boxes, they can, of course, achieve a 100% success rate. Another way to
put this is in terms of the Clauser-Horne-Shimony-Holt (CHSH) inequality
for two bivalent Alice-observables and two bivalent Bob-observables. The
CHSH correlation for the four pairs of observables is constrained to values
between−2 and 2 for local classical correlations, between−2

√
2 and 2

√
2 for

quantum correlations, and between −4 and 4 for PR-box correlations, which
are maximal for correlations that do not allow instantaneous signaling. Ge-
ometrically, as Pitowsky showed,1 the classical or local correlations for this
case can be represented by the points in an 8-dimensional polytope with facets
characterized by the CHSH inequality and similar inequalities, the quantum
correlations by the points in a convex set that includes the polytope, and the
no-signaling correlations by a polytope that includes the quantum convex set.

The three Mikes do something brilliantly different. Instead of the CHSH
inequality, they consider the Mermin inequality for three bivalent observables
for each agent. In terms of bananas, Alice and Bob peel their bananas in
one of three possible ways associated with three directions in which they
are required to hold their bananas while peeling. This complication, which
I blush to admit I first thought was pointless, results in a tetrahedron for
the classical or local correlations, an elliptope for the quantum convex set (a
‘fat’ tetrahedron that includes the classical tetrahedron), and a cube for the
no-signaling correlations—easily visualizable in three dimensions. The three
Mikes produce two derivations for the non-linear inequality characterizing
the elliptope: a derivation ‘from within’ quantum mechanics, which uses the
Born rule for probabilities, and a derivation ‘from without,’ which follows
work by Yule in the late 19th century on Pearson correlation coefficients. In
Yule’s derivation, the inequality is a general constraint on correlations between
three random variables. In the ‘proof from without,’ the random variables are
the eigenvalues of Hilbert space operators representing observables and the

1 I. Pitowsky, ‘On the geometry of quantum correlations,’ Physical Review A 77, 062109
(2008).
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constraint follows quite generally, without assuming the Born rule for quantum
probabilities.

The Mermin inequality refers to spin-1/2 particles in the singlet state.
Remarkably, it turns out that singlet state quantum correlations are confined
to the elliptope even for higher spin values, while the tetrahedron for local
classical correlations is replaced by a succession of polyhedra with more and
more facets for higher spins, approaching the elliptope in the limit of infinite
spin. All this is beautifully illustrated in 3-dimensional visualizations. The
analysis is particularly impressive because it shows clearly and precisely how
classical and quantum correlations are related in this particular case.

This is certainly the first book in which the word ‘Bubism’ appears. The
three Mikes use the term to refer to ‘an interpretation of quantum mechanics
along the lines of Bananaworld, belonging to the same lineage, or so we will
argue, as the much-maligned Copenhagen interpretation.’ Bananaworld began
as a discussion of entanglement, but as I wrote the book it evolved into a way
of thinking about the transition from classical to quantum mechanics. The
three Mikes have taken this perspective and articulated and developed it into
an interpretation that I fully endorse but which owes as much to their careful
analysis of the conceptual issues as my own thinking.

I added the last chapter to Bananaworld, ‘Making Sense of it All,’ because
I thought I should say something about the measurement problem of quantum
mechanics as it is usually understood, and how various interpretations propose
to solve the problem. But the chapter doesn’t fit well with the rest of the book,
which, taken as a whole, was already an attempt to make sense of it all. The
revised version in the paperback edition is an improvement, but not entirely
satisfactory. Chapter 6 of Understanding Quantum Raffles, on interpreting
quantum mechanics, nails it.

Here, following the account by the three Mikes, is how I now see the view
they call Bubism.Quantummechanics beganwithHeisenberg’s unprecedented
move to ‘reinterpret’ classical quantities like position and momentum as non-
commutative. In a commutative algebra, the 2-valued quantities, representing
propositions that can be true or false, form a Boolean algebra. A Boolean
algebra is isomorphic to a set of subsets of a set, with the Boolean opera-
tions corresponding to the union, intersection, and complement of sets. The
conceptual significance of Heisenberg’s proposal lies in replacing the Boolean
algebra of subsets of classical phase space, where the points represent classical
states and subsets represent ranges of values of dynamical variables, with a
non-Boolean algebra. Later, following the Born-Heisenberg-Jordan Dreimän-
nerarbeit and further developments by Dirac, Jordan, and von Neumann, this
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non-Boolean algebra was formalized as the algebra of closed subspaces of
Hilbert space, a vector space over the complex numbers, or equivalently a
projective geometry. So the transition from classical to quantum mechanics
is, formally, the transition from a Boolean algebra of subsets of a set to a
non-Boolean algebra of subspaces of a vector space.

In his 1862 work ‘On the Theory of Probabilities,’ George Boole charac-
terized a Boolean algebra as capturing ‘the conditions of possible experience.’
Classical theories are Boolean theories. The non-Boolean algebra of quantum
mechanics (for Hilbert spaces of more than two dimensions) can be pictured as
a family of Boolean algebras that are ‘intertwined,’ to use Gleason’s term,2 or
‘pasted together,’ in such a way that the whole family can’t be embedded into
a single Boolean algebra.3 So in a quantum theory, the single Boolean algebra
of a classical theory is replaced by a family of Boolean algebras, in effect, a
family of Boolean perspectives or Boolean frames associated with different
incompatible measurement experiences. The upshot, as von Neumann pointed
out, is that quantum probabilities are ‘perfectly new and sui generis aspects of
physical reality’4 and ‘uniquely given from the start.’

The sense in which quantum probabilities are ‘uniquely given from the
start’ is explained in an address by von Neumann on ‘unsolved problems in
mathematics’ to an international congress of mathematicians in Amsterdam,
September 2–9, 1954.5 Here is the relevant passage:

2 A. N. Gleason, ‘Measures on the closed subspaces of Hilbert space,’ Journal of Mathemat-
ics and Mechanics 6, 885–893 (1957). The term is used to refer to intertwined orthonormal
sets, which are Boolean algebras, on p. 886.
3 Kochen and Specker proved non-embeddability for the ‘partial Boolean algebra’ of sub-
spaces of a Hilbert space of more than two dimensions in S. Kochen and E.P. Specker,
‘On the problem of hidden variables in quantum mechanics,’ Journal of Mathematics and
Mechanics 17, 59–87 (1967). Bell proved a related result as a corollary to Gleason’s theorem
in J.S. Bell, ‘On the problem of hidden variables in quantummechanics,’ Reviews of Modern
Physics 38, 447–452 (1966), reprinted in J.S. Bell, Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, Cambridge, 1987).
4 From an unpublished manuscript ‘Quantum logics (strict- and probability-logics),’ re-
viewed in A.H. Taub in John von Neumann: Collected Works (Macmillan, New York, 1962),
volume 4, pp. 195–197.
5 In Miklós Rédei and Michael Stöltzner (eds.), John von Neumann and the Foundations
of Quantum Mechanics, pp. 231–246 (Kluwer Academic Publishers, Dordrecht, 2001). The
quoted passage is on pp, 244–245. Also quoted (without the last sentence) inM. Rédei, “‘Un-
solved Problems in Mathematics’ J. von Neumann’s address to the International Congress
of Mathematicians Amsterdam, September 2–9, 1954,’ The Mathematical Intelligencer 21,
7–12 (1999).
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Essentially if a state of a system is given by one vector, the transition probability
in another state is the inner product of the two which is the square of the cosine of
the angle between them [sic].6 In other words, probability corresponds precisely to
introducing the angles geometrically. Furthermore, there is only one way to introduce
it. The more so because in the quantum mechanical machinery the negation of
a statement, so the negation of a statement which is represented by a linear set
of vectors, corresponds to the orthogonal complement of this linear space. And
therefore, as soon as you have introduced into the projective geometry the ordinary
machinery of logics, you must have introduced the concept of orthogonality. This
actually is rigorously true and any axiomatic elaboration of the subject bears it out.
So in order to have logics you need in this set a projective geometry with a concept
of orthogonality in it.

In order to have probability all you need is a concept of all angles, I mean angles
other than 90◦. Now it is perfectly quite true that in geometry, as soon as you can
define the right angle, you can define all angles. Another way to put it is that if you
take the case of an orthogonal space, those mappings of this space on itself, which
leave orthogonality intact, leave all angles intact, in other words, in those systems
which can be used as models of the logical background for quantum theory, it is true
that as soon as all the ordinary concepts of logic are fixed under some isomorphic
transformation, all of probability theory is already fixed.

What I now say is not more profound than saying that the concept of a priori
probability in quantum mechanics is uniquely given from the start.

In Bananaworld, I defended what I called an ‘information-theoretic’ inter-
pretation of quantum mechanics. The term is perhaps unfortunate. In the first
place, it invites objections like those by Bell: ‘Whose information? Informa-
tion about what?’7 In the second place, the emphasis should be on probability,
as the three Mikes make clear, with the understanding that information the-
ory is a branch of probability theory specifically concerned with probabilistic
correlations.

If relativity is about space and time, quantum mechanics is about proba-
bility, in the sense that quantum probabilities are ‘sui generis’ and ‘uniquely
given from the start’ as an aspect of the kinematic structure of the theory and
are not imposed from outside as a measure of ignorance, as in classical theo-
ries, where probability is a measure over phase space. In this new framework,
new sorts of nonlocal probabilistic correlations associated with entanglement
are possible, which makes quantum information fundamentally different from

6 Von Neumann evidently meant to say that the transition probability is the square of the
(absolute value of) the inner product, which is the square of the cosine of the angle between
them.
7 J.S. Bell, ‘Against measurement,’ in Physics World 8, 33–40 (1990). The comment is on
p. 34.
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classical information. In a Boolean theory such correlations are impossible
without introducing what Einstein called ‘spooky’ action at a distance.

Quantum probabilities are revealed in measurement, and a measurement is
associated with the selection of a particular Boolean frame in the family of
Boolean algebras that ‘captures the conditions of possible experience.’ In terms
of observables, a measurement involves the selection of a basis of commuting
observables in Hilbert space. As a consequence, the observer is no longer
‘detached,’ unlike the observer in classical mechanics, as Pauli observed.8 The
measurement outcome is a random assignment of truth values to the elements
in the Boolean frame, or a random assignment of values to the observables
in the corresponding basis. What’s puzzling, from a Boolean perspective, is
that measurement in a non-Boolean theory is not passive—not just ‘looking’
and registering what’s there in a passive sense. Measurement must produce
a change in the description, and that’s not how we are used to thinking of
measurement in a Boolean theory. Here’s how Schrödinger puts it:9

(1) The discontinuity of the expectation-catalog [the quantum pure state] due to
measurement is unavoidable, for if measurement is to retain any meaning at all then
the measured value, from a good measurement, must obtain. (2) The discontinuous
change is certainly not governed by the otherwise valid causal law, since it depends
on the measured value, which is not predetermined. (3) The change also definitely
includes (because of ‘maximality’ [the ‘completeness’ of the quantum pure state])
some loss of knowledge, but knowledge cannot be lost, and so the object must
change—both along with the discontinuous changes and also, during these changes,
in an unforeseen, different way.

Quantum probabilities don’t simply represent ignorance about what is the
case. Rather, they represent a new sort of ignorance about something that
doesn’t yet have a truth value, something that simply isn’t one way or the other
before we measure, something that requires us to act and do something that we
call a measurement before nature supplies a truth value—and removes the truth
values of incompatible propositions that don’t belong to the same Boolean
frame, associated with observables that don’t commute with the measured
observable.

8 M. Born, The Born-Einstein Correspondence (Walker and Co., London, 1971). Pauli talks
about the classical ideal of the ‘detached observer’ in a letter to Born dated March 30, 1954
on p. 218.
9 ‘Die gegenwärtige Situation in der Quantenmechanik,’ Die Naturwissenschaften 48, 807–
812; 49, 823–828, 844–849 (1935). The quotation is from p. 826. The translation is by John
Trimmer, Proceedings of the American Philosophical Society 124, 323—338 (1980).
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Schrödinger calls the measurement problem ‘the most difficult and most
interesting point of the theory.’10 As the three Mikes aptly put it, the measure-
ment problem is a feature of quantum mechanics as a non-Boolean theory, not
a bug.

Interpretations of quantum mechanics that oppose the Copenhagen inter-
pretation begin with Schrödinger’s wave theory as conceptually fundamental,
rather than Heisenberg’s algebraic formulation of quantum mechanics, and
propose dynamical solutions to what then seems to be a problem: how does
what we do when we perform a measurement by manipulating some hardware
in a laboratory select a Boolean frame in Hilbert space, a basis of observables
that have definite values, and what explains the particular assignment of truth
values to the elements in the Boolean frame, or the particular assignment of
values to observables.

Bohm’s theory tells a one-world Boolean story: position in configuration
space is always definite, associated with a Boolean algebra, and other quan-
tities become definite through correlation with position via the measurement
dynamics. The problem here, as Bell showed, is that Bohm’s theory is nonlo-
cal in configuration space, allowing instantaneous action at a distance, which
Einstein regarded as ‘spooky’11 and so non-physical (although averaging over
the Born distribution hides the nonlocality). I suspect that it was for this rea-
son that Einstein dismissed Bohm’s theory as ‘too cheap for me’ in a letter to
Born.12

The Everett interpretation tells a multi-world Boolean story in which every-
thing that can happen does happen in some Boolean world. This avoids having
to explain why this measurement outcome rather than that measurement out-
come, since every possible outcome actually occurs in some world. The trick is
to show how this fits Schrödinger’s wave theory of quantum mechanics. There
is no spooky action at a distance in the Everettian interpretation, but the mea-
surement problem appears as the basis problem: how to explain the selection of
a particular basis with respect to which the multiplicity associated with ‘split-
ting into many worlds’ occurs in a measurement process. Everettians solve the
basis problem by appealing to the dynamics of environmental decoherence:
as the environment becomes increasingly entangled with the measuring ap-

10 ibid., p. 826.
11 M. Born, op. cit.. The term is used in a letter from Einstein to Born dated March 3, 1947
on p. 158.
12 M. Born, op. cit. The comment is on p. 192 in a letter from Einstein to Born dated May
12, 1952.
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paratus, it becomes more and more difficult, but not in principle impossible,
to distinguish an entangled state from the corresponding mixture with respect
to a particular coarse-grained basis. Quantum probabilities with respect to
the elements of this basis are explained in terms of the decision theory of an
agent-in-a-world about to make a measurement. Even granting decoherence as
an effective solution to the basis problem, it seems contrived to interpret the
‘perfectly new and sui generis aspects of physical reality,’ the Hilbert space
probabilities that are ‘uniquely given from the start,’ in this way.

Understanding Quantum Raffles is likely to be a classic in the foundational
literature on quantummechanics. The threeMikes have produced an exception-
ally lucid book on quantum foundations that is also suitable for readers, with
some tolerance for basic algebra and geometry, who are looking for answers
to conceptual questions that are typically glossed over in standard courses on
quantum mechanics.

Jeffrey Bub
Philosophy Department
Institute for Physical Science and Technology
Joint Center for Quantum Information and Computer Science
University of Maryland, College Park
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The volume you just got yourself entangled with was inspired by Jeffrey Bub’s
(2016) Bananaworld: Quantum Mechanics for Primates. Our original plan
had been to contribute an article to a special issue of the journal Studies in
History and Philosophy of Modern Physics devoted to Jeff’s book. That article
eventually grew and morphed into this monograph, which we feel can now
stand on its own feet. We are proud to present it as a volume in the series
Boston Studies in the Philosophy and History of Science. In this volume,
on the basis of some novel technical results (Chapters 2–5), we present and
defend an informational interpretation of the basic framework of quantum
mechanics (Chapters 1, 6–7). Our primary target audience for this book is
physicists, philosophers of physics and students in these areas interested in
the foundations of quantum mechanics. However, in the spirit of Bananaworld
and its sequel, the graphic novel Totally Random: Why Nobody Understands
Quantum Mechanics written by Jeff and his daughter Tanya (Bub & Bub,
2018), we wrote parts of our book (especially Chapter 2 and Sections 3.1–3.2)
with the idea that they could be used as the basis for courses introducing
non-physics majors to quantum mechanics, or for self-study by those outside
of a university setting with an interest in quantum mechanics. Such readers,
however, should be prepared to brush up on some high-school mathematics
along theway (basic algebra and geometry; sines and cosines; vectors, matrices
and determinants—but absolutely no calculus).13 We hope that all readers,
even those who disagree with us on the basic issue of how their entanglement
with our book results in them forming a definite view of its contents, will find
something of value between its covers. This preface serves two purposes. First,
we will briefly describe the contents of this volume. Second, we will give a
brief history of howwe came to write it, which will also give us an opportunity
to thank the many people who helped us along the way.

Let us begin then by laying out the overall argumentative strategy of our
book (which is in broad outline the same as it was in our original plan for a
paper). We use correlation arrays, the workhorse of Bananaworld, to analyze
the correlations found in an experimental setup due to David Mermin (1981)
for measurements on pairs of spin- 1

2 particles in the singlet state. Adopting
an approach pioneered by Itamar Pitowsky (1989b) and promoted in Banana-

13 See Section 2.6.2, note 28, for some recommendations for non-expert readers looking for
introductions to the basic formalism of quantum mechanics.

xv
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world, we geometrically represent the class of correlations allowed by quantum
mechanics in this setup as an elliptope in a non-signaling cube, which repre-
sents the broader class of all correlations that cannot be used for the purpose
of sending signals traveling faster than the speed of light. To determine which
of these quantum correlations are allowed by so-called local hidden-variable
theories, we investigate which ones we can simulate using raffles with baskets
of tickets that have the outcomes for all combinations of measurement settings
printed on them. The class of correlations found this way can be represented
geometrically by a tetrahedron contained within the elliptope.We use the same
Bub-Pitowsky framework to analyze a generalization of the Mermin setup for
measurements on pairs of particles with higher spin in the singlet state. The
class of correlations allowed by quantum mechanics in this case is still rep-
resented by the elliptope; the subclass of those whose main features can be
simulated with our raffles can be represented by polyhedra that, with increas-
ing spin, have more and more vertices and facets and get closer and closer to
the elliptope.

We use these results to advocate for Bubism (not to be confused with
QBism), an interpretation of quantum mechanics along the lines of Banana-
world, belonging to the same lineage, or sowewill argue, as themuch-maligned
Copenhagen interpretation. Probabilities and expectation values are primary
in this interpretation. They are determined by inner products of state vectors
in Hilbert space. State vectors do not themselves represent what is real in
quantum mechanics. Instead the state vector gives a family of probability dis-
tributions over the values of subsets of observables, which do not add up to one
overarching joint probability distribution over the values of all observables.
As in classical theory, these values (along with the values of non-dynamical
quantities such as charge or spin) represent what is real in the quantum world.
Hilbert space puts constraints on possible combinations of such values, just as
Minkowski space-time puts constraints on possible spatio-temporal constella-
tions of events. To illustrate how generic such constraints are, we show that
the one derived in this volume, the elliptope inequality, is a general constraint
on correlation coefficients, which can already be found in much older litera-
ture on statistics and probability theory. Udny Yule (1897) already stated the
constraint. Bruno de Finetti (1937) already gave it a geometrical interpretation
sharing important features with its interpretation in Hilbert space.

As this brief synopsis shows, polytopes and philosophy form two pillars of
this volume. The third pillar is pedagogy. As noted above, wewrote parts of this
volume as an introduction to quantummechanics for non-specialists. For many
years, one of us (Janssen) used a combination of the paper by Mermin (1981)
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mentioned above and chapters from David Albert’s Quantum Mechanics and
Experience (Albert, 1992) to introduce quantum mechanics to non-physics
majors in college and in high-school physics classes. Over the past few years,
Janssen (assisted by Janas) has been developing a different approach, informed
by and informing the material presented in this book. Like Albert (1992, Ch.
1, pp. 1–16, “Superposition”), we start, in Chapter 2, with certain stochastic
experiments and show that classical theory (more precisely: local hidden-
variable theories) cannot account for the statistics found in these experiments.
Following Mermin rather than Albert, however, we choose (variations on) an
experiment highlighting entanglement rather than superposition as the key
feature that distinguishes quantum theory from classical theory (cf. Chapter
2, note 2 and Chapter 6, note 44). Albert (1992, Ch. 2, pp. 17–60) proceeds
to give a concise and elementary exposition of the formalism of quantum
mechanics (which we highly recommend to readers unfamiliar with it) and
shows how it can account for the puzzling statistics presented in the opening
chapter of his book. Yet it remains unclear how anybody would come up
with this way of accounting for these puzzling statistics in the first place.
Bub’s Bananaworld, especially the notion of correlation arrays, allows us to
do better. The correlation arrays for the puzzling statistics we start from can be
parametrized by the sines and cosines of certain angles. In quantummechanics
such sines and cosines naturally emerge as components of vectors in various
bases in what is called a Hilbert space. In Section 2.6, we introduce just enough
formalism to get this basic idea across to non-specialists. More rigorous and
more general versions of the arguments in Chapter 2 will be given in Chapter
4, which the reader can skip or skim (along with Chapter 5) without losing the
thread of the overall argument (but we hope the reader will at least take a look
at the pictures of correlation polyhedra in Figures 4.11, 4.13 and 4.17). The
connection between quantum mechanics and general statistics and probability
theory will be explored further in Chapter 3, also accessible to non-specialists
with the exception of the later parts of Section 3.4. The upshot of Chapters
2–5 is summarized at the beginning of Chapter 6, making that chapter largely
self-contained and thus suitable, all by itself, for courses on the foundations of
quantum mechanics.

Polytopes, philosophy and pedagogy are the main interests of Janas, Cuf-
faro and Janssen, respectively. Accordingly, even though all three of us made
substantial contributions to all seven chapters, Janssen had final responsibil-
ity for Chapters 1–2, Janas for Chapters 3–5 and Cuffaro for Chapters 6–7.
The three of us came to this project from different directions. Janssen, a his-
torian of science, is a recovering Everettian who has been defending Bub’s
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information-theoretic interpretation with the zeal of the converted. Cuffaro, a
philosopher of science, was and is mainly interested in quantum computation
and information, but began to think seriously again about the interpretation of
quantummechanics through conversations with Bill Demopoulos before meet-
ing Janssen in 2017. Janas, a theoretical physicist, was and remains a Bohm
sympathizer. Though we each have our own unique interests and histories, one
thing the three of us share is a broadly Kantian outlook, something careful
readers familiar with that outlook will not fail to notice as they go through the
pages of this volume.

This project started in the Fall of 2016 when, at Janssen’s suggestion,
the Physics Interest Group (PIG) of the Minnesota Center for Philosophy of
Science of the University of Minnesota, devoted most of its biweekly meetings
that semester to Bananaworld. This book rekindled Janssen’s interest in Bub
and Pitowsky’s heretical contribution to the Everett@50 conference in Oxford
in 2007, “Two dogmas about quantum mechanics” (Bub & Pitowsky, 2010).
In these PIG sessions, Janssen presented his reworking of Mermin’s setup
for testing a Bell inequality in terms of Bub’s correlation arrays along with
a (clumsy) derivation of the so-called Tsirelson bound for this setup. Janas
attended these sessions. On a return visit to Bananaworld in the Fall of 2017,
Janas began to explore the geometrical representation of correlation arrays by
polyhedra and polytopes. He thereupon joined Janssen and Cuffaro, who, at the
2017 edition of the conference New Directions in the Foundations of Physics
in Tarquinia, had decided to write a response to Bananaworld together. In the
Fall of 2017, Janssen gave a physics colloquium at Minnesota State University
Mankato on our joint project, and then a lunchtime talk at the Center for
Philosophy of Science at the University of Pittsburgh in the Spring of 2018.
By that time Laurent Taudin, illustrator extraordinaire for many projects of
the Max-Planck-Institut für Wissenschaftsgeschichte in Berlin, had drawn the
figures of the chimps and the bananas that we have been using in talks and
lectures since (see Figures 2.1 and 2.2).

After extensive preparatory work by Janas and Janssen in the Fall of 2018,
we started writing what would eventually become this book during a visit by
Cuffaro to Minnesota in January 2019. In March, Cuffaro presented a prelim-
inary version of parts of Chapters 2, 3 and 6 at the Workshop on Interpreting
Quantum Mechanics organized by Giovanni Valente at the Politecnico di Mi-
lano in Milan. In May, after a test run by Janas in a mathematics colloquium
at the University of Minnesota, the three of us then presented parts of these
same chapters at the 2019 edition of New Directions in the Foundations of
Physics in Viterbo. A question for Janas by Wayne Myrvold in Q&A alerted
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us to an important gap in one of our key results, which we have since managed
to close (see Chapter 3, notes 10 and 11). In June 2019 the three of us met
again inMinneapolis. Over the ensuing months we finalized (or so we thought)
our manuscript and in October we posted it on the arXiv and on the PhilSci
Archive preprint servers. By that time Janas had filled several whiteboards
in Tate Hall, housing part of the School of Physics and Astronomy of the
University of Minnesota, many times over to go over (preliminary versions
of) the results presented in Chapters 2–5 with Janssen and, when in town,
Cuffaro. Janas also did the computer programming needed for Section 4.2 and
for Figures 2.8 and 2.16. Janssen is responsible for most other figures. Cuffaro
handled whatever LATEX issues we ran into.

Janssen gave two talks on parts of our preprint at the Second Chilean Con-
ference on the Philosophy of Physics organized by Pablo Acuña in Santiago in
December 2019, where he had the opportunity to discuss thematerial in person
with JeffBub. A slightly revised version of our preprint was then pre-circulated
among participants in a symposium on the foundations of quantum mechanics
organized by Janssen, Jürgen Jost and Jürgen Renn at theMax-Planck-Institut
für Wissenschaftsgeschichte in Berlin in January 2020. In this symposium,
Cuffaro and Janssen presented parts of what was starting to get referred to as
the “Three Mikes Manifesto,” a play on the famous Dreimännerarbeit (Three
men paper) with which Max Born, Werner Heisenberg and Pascual Jordan
(1926) consolidated matrix mechanics. Based on feedback from the partici-
pants in this symposium (especially Guido Bacciagaluppi, Jürgen Jost, Jürgen
Renn and Matthias Schemmel) and from others who had read our preprint,
we added further material to Chapter 5 and substantially rewrote Chapters 1
and 6 (especially Section 6.5 on measurement). We also changed the title. The
title of our preprint, “Putting probabilities first: How Hilbert space generates
and constrains them,” would have been fine for a journal article in a special
issue devoted to Bananaworld. It would have been obvious, for instance, in
that context that our topic is quantum mechanics even though the title does
not explicitly mention this. Given the use of Hilbert space methods in general
probability theory and statistics, however, this would not have been clear for
a monograph with that same title. We settled on the new title Understanding
Quantum Raffles. Raffles of various designs are ubiquitous in this volume.
And while we are hardly the first to argue that the basic formalism of quan-
tum mechanics is essentially a new framework for handling probabilities (cf.
Chapter 1, notes 16 and 29), we are the first to do so on the basis of a sustained
comparison between raffles serving as toy models of local hidden-variable the-
ories and the statistical ensembles characterized by density operators in terms
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of which John von Neumann (inspired by Richard von Mises) first formulated
quantum mechanics (Von Neumann, 1927b). The “quantum raffles” in the title
of our book refer to these statistical ensembles introduced by von Neumann.

In the Fall of 2020, after trying out some of the material in Chapter 2
in classes at the University of Minnesota and Washburn High School in Min-
neapolis, Janssen, assisted by Janas, taught a seminar in the Honors Program of
theUniversity ofMinnesota under the title of Gilder’s (2008) The Age of Entan-
glement, covering—in addition to Gilder’s book and the graphic novel Totally
Random by Tanya and JeffBub (2018)—Chapters 1–3 of themanuscript ofUn-
derstanding Quantum Raffles. In response to student feedback, we reorganized
some of the material in Chapters 2 and 3.

We are grateful for the questions from the audiences at the various work-
shops and talks mentioned above as well as for the feedback from students at
the University of Minnesota and Washburn High School. In addition, we want
to single out a number of individuals not explicitly mentioned so far and thank
them for helpful comments and discussion: Jossi Berkovitz, Victor Boantza,
Harvey Brown, Časlav Brukner, Adán Cabello, Joe Cain, Cindy Cattell, Radin
Dardashti, Michael Dascal, Robert DiSalle, Tony Duncan, Lucas Dunlap,
Laura Felline, Sam Fletcher, Mathias Frisch, Chris Fuchs, Louisa Gilder, Sona
Ghosh, Peter Gilbertson, Peter Grul, Bill Harper, Stephan Hartmann, Geof-
frey Hellman, Leah Henderson, Federico Holik, Luc Janssen, Christian Joas,
Molly Kao, David Kaiser, Jim Kakalios, Alex Kamenev, Jed Kaniewski, Mar-
ius Krumm, Femke Kuiling, Samo Kutoš, Christoph Lehner, Charles Marcus,
TusharMenon, EranMooreRea,MarkusMüller,MaxNiedermaier, Sergio Per-
nice, Vincent Pikavet, Serge Rudaz, David Russell, Rob “Ryno” Rynasiewicz,
Juha Saatsi, Ryan Samaroo, Chris Smeenk, Rob Spekkens, Jos Uffink, David
Wallace and Brian Woodcock. We thank Lindy Divarci, Jürgen Renn and
Matteo Valleriani of the Max-Planck-Institut für Wissenschaftsgeschichte for
their help in turning our manuscript into a book. We thank an anonymous
referee who reviewed our book for Springer both for the enthusiastic endorse-
ment and for helpful comments. We thank Lucy Fleet, Prasad Gurunadham
and Svetlana Kleiner at Springer for shepherding our manuscript through the
production process.

We saved our most important intellectual debts for last. A heartfelt thanks
to Jeff Bub for his enthusiastic support of our efforts and for his patience in
explaining and discussing his views on the foundations of quantum mechanics
with us, both in person and in email exchanges dating back to 2007.We are also
grateful for all we learned from Itamar Pitowsky (1950–2010) and William
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Demopoulos (1943–2017). Instead of dedicating this volume to them, we
would have loved to discuss it with Bill and Itamar.

Finally, we want to express our thanks for generous institutional support.
Janssen gratefully acknowledges support from the Alexander von Humboldt
Stiftung and the Max-Planck-Institut für Wissenschaftsgeschichte. Cuffaro
gratefully acknowledges support from the Alexander von Humboldt Stiftung,
the Rotman Institute of Philosophy at Western University, the Foundational
Questions Institute (FQXi), the Descartes Centre at Utrecht University, and
the Institute for Quantum Optics and Quantum Information in Vienna. Janas
thanks the University of Minnesota for travel support as well as the staff of
Al’s Breakfast in Dinkytown.

Lino Lakes, MN, USA Michael Janas
Montréal, Québec, Canada Mike Cuffaro
Minneapolis, MN, USA Michel Janssen

March 2021



Draft version, July 30, 2021



Draft version, July 30, 2021

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Representing distant correlations by correlation arrays and
polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Taking Mermin to Bananaworld . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Correlations found when peeling and tasting pairs of

quantum bananas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Non-signaling correlation arrays . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The non-signaling cube, the classical tetrahedron and the

quantum elliptope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Raffles meant to simulate the quantum correlations and the

classical tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 The quantum correlations and the elliptope . . . . . . . . . . . . . . . . 43

2.6.1 Getting beyond the classical tetrahedron: the
elliptope inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 The quantum correlation array: the singlet state and
the Born rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 The elliptope and the geometry of correlations . . . . . . . . . . . . . . . . 65
3.1 The Pearson correlation coefficient and the elliptope inequality 67
3.2 Why the quantum correlations saturate the elliptope . . . . . . . . . 71
3.3 Why our raffles do not saturate the elliptope . . . . . . . . . . . . . . . 83
3.4 The geometry of correlations: from Pearson and Yule to

Fisher and De Finetti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Generalization to singlet state of two particles with higher spin . 103
4.1 The quantum correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1.1 Quantum formalism for one spin-s particle . . . . . . . . . . 107
4.1.2 Quantum formalism for two spin-s particles in the

singlet state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.3 Wigner d-matrices and correlation arrays in the

spin-s case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.4 Non-signaling in the spin-s case . . . . . . . . . . . . . . . . . . . 118
4.1.5 Anti-correlation coefficients in the spin-s case . . . . . . . 119
4.1.6 Cell symmetries in the spin-s case . . . . . . . . . . . . . . . . . 121

4.2 Designing raffles to simulate the quantum correlations . . . . . . . 125

xxiii



Draft version, July 30, 2021

xxiv Contents

4.2.1 Spin- 1
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.2 Spin-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2.3 Spin- 3

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2.4 Spin-s (s≥ 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5 Correlation arrays, polytopes and the CHSH inequality . . . . . . . 157

6 Interpreting quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.1 The story so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.2 From within and from without . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.3 The new kinematics of quantum theory . . . . . . . . . . . . . . . . . . . 183
6.4 Examples of problems solved by the new kinematics . . . . . . . . 187
6.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227


