
Introduction

Michael E. Cuffaro and Samuel C. Fletcher

Our modern understanding of computation stems in large part from Alan Turing’s formaliza-
tion of the mathematical activity of following an effective method for computing a function.
Thus the roots of computer science (at least as traditionally construed) are in this sense those
of an essentially mathematical science. The science of Physics, on the other hand, ultimately
aims to describe the characteristics of concrete systems as they exist in the natural world.
It is thus a nontrivial question to ask whether, and how, physics can illuminate computer
science and vice versa.

Indeed, the possible questions one may ask regarding the connections between computa-
tion and physics are many, varied, and multi-faceted. For the purposes of a philosophical
investigation into these connections they can be usefully characterized as falling into two
main categories. On the one hand, there are those questions related to the connections be-
tween computational and physical systems, and on the other hand there are those questions
related to the connections between computational and physical theory in general. These
two main categories can further be subdivided into two sub-categories each, which together
comprise the four major parts of this volume:

• Interrelations between computational and physical systems

I. The computability of physical systems and physical systems as computers

II. The implementation of computation in physical systems

• Interrelations between computational and physical theory

III. Physical perspectives on computer science

IV. Computational perspectives on physical theory

In the remainder of this introductory chapter, we will summarize each of these parts and
the particular contributions of this volume that fall under them. Before we do so, however, it
will be useful to review some of the basic concepts which will generally be taken for granted
in the rest of the book.

1

Michael E. Cuffaro and Samuel C. Fletcher

. . . 0 0 1 1 0 0 1 0 0 . . .

n

Figure 1: A representation of a Turing machine with read/write head in state n and tape entries “0” and “1”
representing blank and marked squares, respectively.

1. Computability theory and the Church-Turing thesis

Intuitively, computability theory concerns which tasks can be completed in principle by
following a completely explicit set of instructions. These instructions must be definite, in
the sense that they allow no procedural interpretation or flexibility, and self-contained, in the
sense that they require no input other than what is provided in the description of the task
itself. Such a set of instructions, called an effective procedure, hence demands no creativity
of whoever (or whatever) executes it.

Effective procedures have found their greatest application in the mathematical domain,
many of whose problems can be reduced to the computation of a function of natural numbers.
A function f : N

k → N is said to be effectively computable when there is an effective
procedure for calculating its value for any argument. For example, the familiar elementary
arithmetic functions of addition and multiplication are clearly effectively computable, as
are functions composed from them. Further, the effective computability of a mathematical
decision problem, such as “Is n prime?”, can be encoded into a function whose range is {0, 1},
corresponding with the “no” and “yes” answers.

To make this informal concept of effective computation formally tractable, myriad models
for computation have been proposed, inspired variously from logic, arithmetic, and mechan-
ics.1 One might naturally expect that these different proposals, various as they are in their
starting points, lead to formalizations of differing computational strength. So it is remarkable
that they in fact determine extensionally the same class of functions as being computable.

The most important and influential of these proposals, on which we focus in this intro-
duction, is that of the Turing machine (TM). A TM is a type of abstract state machine,
consisting of the following components (an example of which is illustrated in Figure 0.1):

• An arbitrarily long tape, divided into sequential squares that can be blank or contain
a mark.

• A read/write head, which sits atop a particular square, can read whether it contains a
mark, and can perform the following actions: print a mark on the square if it doesn’t
have one, erase the mark on the square if it has one, move one square to the right, and
move one square to the left.

• A program, or finite set of instructions, for the read/write head, each of which has the
following form:

1Examples include representability in a formal system, the λ-calculus, recursive function theory, Markov
algorithms, register machines, and Turing machines (what we focus on below). See Epstein and Carnielli
(2008, ch. 8E) for brief descriptions and references to these various approaches.

2

Introduction

TM Instruction Form In state n, if the current square is [blank/marked], perform
[action] and transition to state m. In abbreviated form: (n, [0/1], [action],m).

The tape is the medium for the input and output to a proposed calculation by the machine,
as well as for all the intermediate work required to transition between them. It typically
encodes these in binary notation, for example with blank and marked squares representing
the numerals “0” and “1,” respectively. The read/write head performs the steps leading to
the computation through its fixed set of actions. The program encodes an effective procedure
for the TM to follow:

1. A TM begins in some pre-specified state at some pre-specified location on the tape.

2. The read/write head reads its current square, then performs the action (if any) specified
by the program according to what’s read and the current state.

3. It then transitions to another state, according to the program, whereupon step two is
repeated.

A program need not have an action and state transition specified for every state and input
from the current square. If it does not, then the read/write head halts, indicating the end
of the computation, at which point the contents of the tape represent the computation’s
output.2

Suppose now that an encoding of inputs and outputs of natural numbers on the tape
and a starting location for the printing head on the tape has been fixed. One then says
that a function f : N

k → N is Turing-computable if and only if there is a TM that for
all (n1, . . . , nk) ∈ N

k eventually halts with output encoding f(n1, . . . , nk) when begun with
input encoding (n1, . . . , nk).

Because the TM’s tape represents the inputs and outputs of the function it computes
and the functionality of the read/write head is fixed, the real source of variability amongst
TMs comes from the program. TMs may thus be enumerated by their programs, which
can be represented by sets of ordered quadruples of the above specified TM Instruction
Form. For example, the set {(1, 0, 1, 1), (1, 1,→, 1)} defines a program (i.e., a TM) with only
one state, in which it writes a mark if the current square is empty and otherwise moves
to the right. Since every Turing-computable function must be computable by some TM,
it follows immediately that the Turing-computable functions are enumerable. But because
there are uncountably many functions of natural numbers, there must be functions that are
not Turing-computable – infinitely more, in fact, than those that are.

Two further remarkable facts build upon such an enumeration.3 First is the existence of
universal TMs, ones that can simulate the computation of any other TM. In other words,
there exist TMs such that, when given input encoding (m,n1, . . . , nk), they eventually halt
with output fm(n1, . . . , nk), where fm is the Turing-computable function computed by the
mth TM. Second is the specification of concrete non-Turing-computable functions. Most

2Despite the physically evocative story involving “components” and so on, a concrete mechanism for
implementing or constructing an actual TM is neither provided nor necessary. This is the sense in which the
TM is an abstract machine providing a mathematical definition of computation, rather than a schematic for
a physical machine providing an empirical account of computation; cf. Section 4 of this Introduction.

3For more on TMs, see Barker-Plummer (2016) and references cited therein.

3

Michael E. Cuffaro and Samuel C. Fletcher

famous of these is the halting function h : N2 → N, which is equal to 1 if TM m halts on
input n, and is equal to 2 otherwise.

The theory of computability can be developed much further,4 but to close this section
we circle back to the original motivation for TMs: does Turing-computability adequately
formalize the concept of effective computability? Clearly every Turing-computable function
is effectively computable, for the action of a TM that computes such a function is given
by an effective procedure. The statement that the converse is also true is known as either
Turing’s Thesis or the Church-Turing Thesis.

Church-Turing Thesis (CTT) Every effectively computable function of natural numbers
is Turing computable.

The truth of the CTT would imply that one can identify or replace the extension of the
informal concept of effective computability with that of the formal concept of Turing-
computability, thereby establishing a completely adequate explication (cf. Carnap 1947,
sec. 2; Carnap 1950b, ch. 1) of the former. There is a large literature on the status and
interpretation of the CTT,5 but it is fair to say that it is widely accepted among computer
scientists and beyond. That said, the theory of computability and the CTT only make claims
about what is possible in principle to compute, given the idealizations of arbitrarily large
temporal, spatial, and material resources – computing steps, tape squares, and the incor-
ruptible functioning of Turing machinery – that abstract away from their actual abundance.
When an accounting of these resources is brought to bear, as in the next section of this In-
troduction, one can distinguish not just between computable and non-computable functions,
but, among the computable ones, those of various degrees of difficulty.

2. Computational complexity theory

In computational complexity theory, computational problems are classified based on their
resource costs, i.e., those in time and space. We will focus on time, which is the more impor-
tant measure. Arguably the most basic distinction within the theory is that between those
decision problems (i.e., yes-or-no questions) that are “easy” (a.k.a. “feasible,” “efficiently
solvable,” “tractable,” etc.) and those that are not (i.e., “hard”). According to the Cobham-
Edmonds thesis (Dean 2016b), a decision problem is easy if it is solvable in “polynomial
time,” i.e., if it can be solved in a number of steps bounded by a polynomial function of its
input size, n. Problems so solvable on a deterministic Turing machine (DTM) comprise the
complexity class P.

Formally, one can conceive of a decision problem as one of determining whether a given
string x of length n is in the “language” L. For example, determining whether x is prime
amounts to determining whether it is in the language {10, 11, 101, 111, 1011, 1101, 10001,
10011, . . .} (the set of binary representations of prime numbers). Now, call a language L a
member of the class DTIME(T (n)) if and only if there is a DTM for deciding membership in
L whose running time, t(n), is “on the order of T (n),” or in symbols: O(T (n)). Here, T (n)
represents an upper bound for the growth rate of t(n) in the sense that, by definition, t(n)

4See, for instance, Immerman (2016) and references cited therein.
5See, for instance, Copeland (2015) and references cited therein.

4

Introduction

Start

1,1,R

a

0,0,R

b
0,0,R

0,1,S / 1,1,S

1,1,R
Accept

0,0,R

1,1,R

0,0,L

0,0,S

Figure 2: This NTM accepts binary strings ending in “00,” since for a given such x, there exists a series of
transitions which end in “Accept.” But this is not guaranteed. The machine is guaranteed, on the other hand, to
reject any string not ending in “00.” An edge from s1 to s2 labeled α, β, P is read as: In state s1, read α from
the tape, overwrite α with β, move the read/write head to P (L = to the left, R = to the right, S = same), and
finally transition to state s2.

is O(T (n)) if for every sufficiently large n, t(n) ≤ k ·T (n) for some constant k.6 We can now
formally characterize P (Arora and Barak 2009, p. 25) as:

P =
⋃

k≥1

DTIME(nk). (1)

A nondeterministic Turing machine (NTM) is such that it may “choose,” when in a
given state, which one of a set of possible successor states to transition to; see Figure 0.2.
It is said to accept a string x if and only if there exists a path through its state space that,
given x, leads to an accepting state. It rejects x otherwise. NTIME(T (n)) is now defined,
analogously to DTIME(T (n)), as the set of languages for which an NTM exists to decide, in
O(T (n)) steps, whether a given string x of length n is in L. The class “NP” is defined as:7

NP =df

⋃

k≥1

NTIME(nk). (2)

Exactly how an NTM “chooses” to follow one path rather than another is not defined.
In a probabilistic Turing machine (PTM), in contrast, we associate a particular probability
with each possible transition. We can then define the class BPP (bounded-error probabilistic
polynomial time) as the class of languages such that there exists a polynomial-time PTM
which, on any given run, will correctly determine whether a string x is in the language L
with probability ≥ 2/3.8

It has been conjectured that any language L decidable under a given “reasonable” (i.e.
physically realizable) machine model M is “efficiently simulable” by a PTM in the sense that
a PTM to decide L exists which requires at most a polynomial number of extra time steps

6By “for every sufficiently large n” it is meant that there exists some n0 ≥ 1 such that t(n) ≤ k · T (n)
whenever n ≥ n0.

7Equivalently (Arora and Barak 2009, p. 42), NP is the set of languages for which one can construct a
polynomial-time deterministic TM to verify, for any x, that x ∈ L, given a polynomial-length string u (called
a “certificate” for x).

8The particular threshold probability 2/3 is inessential. Any probability pmin ≥ 1/2 + n−k, with k a
constant, will yield the same class (Arora and Barak 2009, p. 132).

5

Michael E. Cuffaro and Samuel C. Fletcher

compared to a machine of type M. This is known as the “strong” or “extended” Church-
Turing thesis (ECT).9,10 Over the last three decades, however, evidence has been mounting
against the ECT, primarily as a result of the advent of quantum computing (Aaronson 2013,
chs. 10, 15), which we will discuss in more detail in the next section.

3. Quantum computing

The best known classical algorithm for factoring arbitrary integers, the number field sieve
(Lenstra et al. 1990), requires O(2(log N)1/3

) steps to factor a given integer N . Shor’s quan-
tum factoring algorithm requires only a number of steps that is polynomial in logN – an
exponential speedup over the number field sieve. This and other quantum algorithms pro-
vide evidence that the ECT is false, for they seem to show that BQP, the class of languages
probabilistically decidable by a quantum computer in polynomial time, is strictly larger than
BPP. Note, however, that although the evidence furnished by Shor’s algorithm is strong, it
is still an open question whether factoring is in BPP.11

The state of a classical digital computer, whether deterministic or probabilistic, is de-
scribable as a sequence of bits. A bit can be directly instantiated by any two-level classical
physical system, such as a circuit that can be open or closed. In a quantum computer, the
basic unit of representation is not the bit but the qubit. To directly instantiate it, one uses
a two-level quantum system such as an electron (specifically: its spin). Like a bit, a qubit
can be “on”: |0〉, or “off”: |1〉. In general, however, a qubit’s state can be expressed as a
normalized linear superposition:

|ψ〉 = α|0〉 + β|1〉, (3)

where the complex “amplitudes” α and β satisfy the normalization condition: |α|2 + |β|2 =
αᾱ + ββ̄ = 1, with c̄ the complex conjugate of c. We refer to |ψ〉 as the “state vector” for
the qubit.

Unlike a bit, not all states of a qubit can be observed directly. In particular, one never
observes a qubit in a linear superposition with respect to a particular measurement basis.
For example, a “computational basis” measurement – “|0〉 or |1〉?” – will never reveal a
qubit state of the form of equation 3, aside from the trivial case where one of α or β is 0. In
general, given the initial state in equation 3, such a measurement on a qubit will find it in
the state |0〉 with probability |α|2 and in state |1〉 with probability |β|2.

Quantum computers can efficiently simulate classical probabilistic computers, since it is
“easy” in a complexity-theoretic sense to simulate a fair classical coin toss. For example, one
can instantiate the transition Q, defined as:

Q|0〉 → i√
2

|0〉 +
1√
2

|1〉, Q|1〉 → 1√
2

|0〉 +
i√
2

|1〉,

9For further discussion of the ECT and related issues, see Dean (2016a,b,c).
10ECT is sometimes defined with respect to the TM rather than the PTM model, for there has been

mounting evidence that P = BPP (Arora and Barak 2009). For our purposes the choice of TM or PTM
is inessential; a TM is a special case of a PTM for which transition probabilities are always either 0 or 1.
Moreover, defining ECT with respect to the PTM model is convenient when comparing classical computation
in general with quantum computation, which is probabilistic.

11For further discussion, see Cuffaro (in press).

6

Introduction

and then measure in the computational basis.
Unlike classical bits, qubits can sometimes exhibit “interference effects.” For example,

upon applying the “Q-gate” twice to a qubit in the initial state |0〉, “destructive” and “con-
structive” interference is exhibited between the complex amplitudes associated with the |0〉
and |1〉 components of the state vector, respectively:

|0〉 Q−→
(
i√
2

|0〉 +
1√
2

|1〉
)

Q−→
(

− 1
2

|0〉 +
i

2
|1〉 +

1
2

|0〉 +
i

2
|1〉
)

= i|1〉.

A computational basis measurement on the qubit will now yield |1〉 with certainty. This
ability to exhibit interference effects is held by some to be the key to understanding the
source of the power of quantum computers (Fortnow 2003; Aaronson 2013).

The combined state of two or more qubits is said to be separable if it can be expressed
as a product state:

|α〉 ⊗ |β〉 ⊗ |γ〉
The state

|ψ〉 = |0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + |1〉 ⊗ |1〉 = (|0〉 + |1〉) ⊗ (|0〉 + |1〉)

is an example. Not all states of more than one qubit are separable states. The following is
an entangled state; it cannot be expressed as a product state:

|Φ+〉 =
|00〉 + |11〉√

2
.

The ability of qubits to form entangled states when combined is another oft-cited source
of the power of quantum computers (Steane 2003). Entanglement has been shown to be
necessary for achieving quantum speedup when using pure states (Jozsa and Linden 2003).
However in the same paper, Jozsa and Linden argue that it may not be a sufficient resource.
For an in-depth discussion, see Cuffaro (2017).

Other purported sources of quantum speedup include: massive quantum parallelism
achievable through the ability of qubits to realize superposition states (Pitowsky 2002;
Duwell, this volume); the same but with an additional ontological posit of many compu-
tational worlds (Hewitt-Horsman 2009; Cuffaro 2012); quantum contextuality (Howard et al.
2014); and the structure of quantum logic (Bub 2010). For an overview and further discus-
sion, see Hagar and Cuffaro (2017).

4. Computational implementation and the physical Church-Turing theses

The previous sections of this Introduction concerned what could be computed and how ef-
ficiently, largely abstracting from most of the physical, mechanical, and engineering details
that would be necessary to describe adequately a concrete computer executing a concrete
computation (but noting the possibly differences between classical and quantum for com-
plexity theory). This abstraction of computability and computational complexity theory is
perfectly unproblematic when the latter are considered as branches of mathematics. But
their application to putative concrete computers and computations demands an account of

7

Michael E. Cuffaro and Samuel C. Fletcher

how their abstract objects adequately represent physical objects and processes, or how their
descriptions of computation are adequate abstractions from concrete ones. What, in other
words, would it take for a physical system to implement a computation?

There is no consensus about the correct account of computational implementation, but
it will be helpful for the remainder to keep several different proposals in mind.12 The sim-
ple mapping account states, roughly, that a physical system performs a computation when
there is a mapping from the sequential states of the system to the computational states
of a computational model (say, the state and tape contents of a TM) such that physical
state transitions get mapped to computational state transitions. This account is very liberal,
in that it designates multitudinous physical processes as implementing multitudinous com-
putations. It is thus often associated with the thesis of (unlimited) pancomputationalism,
that (nearly) all physical processes implement all (or many non-equivalent) computations, in
some sense.13 Because many take (unlimited) pancomputationalism to be implausible, many
other accounts of computational implementation add extra conditions to the mappings of the
simple mapping account to make computation less abundant. Causal, counterfactual, and
dispositional accounts require that the state transitions support various modal conditions.
Semantic and syntactic accounts take seriously the idea of computation as manipulation of
meaningful symbols, requiring respectively that the mappings be representational, according
to some account of proper representation, or syntactical, according to an account of what it
means for states and changes thereof to be syntactically structured. Mechanistic accounts
demand that the physical system or process implementing a computation does so in terms
of a functional mechanism, an organization of the components of the system suited to the
task of manipulating computational vehicles, those components whose states are mapped to
computational states.

Regardless of how the issue of computational implementation is settled, it raises the
further question of an analog of the CTT for physical computations. Recall from section
1 that the CTT subsumed the extension of an informal concept – effective computability –
under a formal one – Turing computability. Effective computability, though vague, concerns
in some idealized sense what can be in principle computed by a human agent aided only with
simple memory aides such as paper and pencil. Physical computability, by contrast, concerns
what can be computed by any physical process made eligible by one of the above accounts.
So a physical version of the CTT would subsume a presumably wider set of physical processes
under Turing computation, and the converse of a physical version should easily follow from
an argument similar to that for the converse of the CTT.

Several versions of a physical CTT have been proposed. Following Piccinini (2011, 2015),
it is helpful to distinguish between two classes of physical CTT:

Modest Physical CTT Any function of natural numbers that is physically computable is
Turing computable.

Bold Physical CTT Any physical process is Turing computable.

The modest version, like the CTT itself, focuses on the computation of the values of numerical
functions. Sometimes Gandy (1980) is interpreted as having advanced such a thesis:

12See Piccinini (2017, sec. 2) for a more thorough review of proposals for computational implementation.
13See Piccinini (2017, sec. 3) for more on the different types of pancomputationalism.

8

Introduction

Gandy’s Thesis M Any function of natural numbers computable by a discrete determin-
istic mechanical assembly (DDMA) is Turing computable.

A DDMA is any physical device of which an adequate theoretical description uses discrete dy-
namics for finitely many parts of bounded complexity that affect each other only locally and
deterministically. Gandy (1980) then proves that under a certain formalization of DDMAs,
Thesis M follows. This thesis is physical in the sense that DDMAs are intended to be models
for arbitrary machines that humans might construct to aid them in computations. However,
unless one has an essentially anthropocentric account of computational implementation, it
is less plausible that physical computations are exhausted by such machines. Accordingly,
Thesis M sits conceptually between the CTT and the modest physical CTT.

The bold version of the physical CTT requires a bit of interpretation: what does it
mean for a process to be computable? Typically, this means that an adequate theoretical
description of the physical process can be simulated by a TM, in the sense that there is
an injective map from the physical states of the system undergoing dynamical evolution to
the computational states of a TM. A version of this thesis has been advocated by Deutsch
(1985):

Deutsch’s Principle Every finitely realizable physical system can be perfectly simulated
by a universal model computing machine operating by finite means.

The qualification “finitely realizable” is made in explicit reference to Gandy’s formalization
of DDMAs: it demands that, at any time, finitely many parts of bounded complexity change
their state according to local dynamics. Nevertheless, Deutsch’s Principle outstrips Thesis
M in at least three ways: it does not assume discrete dynamics, nor does it restrict its scope
to machines or (more generally) systems adequately described as satisfying the formal re-
quirements for DDMAs; and “universal model computing machine operating by finite means”
is intended not to pick out TMs in particular, but a broader class whose operation includes
stochastic elements. He argues that this class includes any machines computationally equiv-
alent to universal quantum computers.14 Unlike the standard CTT, the truth of Deutsch’s
Principle or related versions of the physical CTT could constrain physical theory,15 ruling out
proposals that allowed for the existence of physical systems implementing hypercomputation,
i.e., the computation of non-Turing computable functions. Various schemes for hypercompu-
tation have been proposed,16 but it is a matter of controversy whether those proposals are
successful at refuting an interesting version of the physical CTT in the context of a plausible
account of computational implementation.

5. Landauer’s principle and the thermodynamics of computation

Besides providing a possible constraint on physical theory via some version of the physical
CTT, computational ideas have also been invoked in explanatory contexts in thermal physics

14Deutsch claims that universal quantum computers outstrip the simulating power of TMs at least because
of quantum non-locality, but there is no reason why non-local correlations must be simulated by non-local
correlations on a classical stochastic system.

15For descriptions of some of these, see Piccinini (2017, sec. 4).
16See Piccinini (2017, sec. 4.3) for an overview and further references.

9

Michael E. Cuffaro and Samuel C. Fletcher

and in investigations of whether a physical computation requires some entropic or energetic
cost solely in virtue of its formal properties. Perhaps the main historical origin for these
connections is in Maxwell’s demon, a thought experiment originally intended to illustrate
how an atomic foundation for thermodynamics would entail only statistical validity for its
second law – the impossibility of cyclically extracting work solely from the heat energy of
a thermal body. In that thought experiment, Maxwell (1871) considered an insulated box
of gas separated in two by a partition with a hole just large enough for one gas molecule
to pass through. An intelligent demon, equipped with a frictionless shutter for the hole,
observes the gas and, whenever a faster-than-average molecule approaches the hole from,
say, the left-hand side of the box, opens the shutter to allow it to pass, and similarly for
slower-than-average molecules approaching from the right-hand side. Continuing in this way,
the gas on the right-hand side of the box becomes hotter and that on the left-hand side
cooler, the resulting temperature difference becoming exploitable for extracting work (i.e.,
by pushing a piston).

Szilard’s (1972 [1929]) analysis of this thought experiment focused on what it would
take to save the validity of the second law. He considered a simplified version thereof in
which the box was not insulated but in contact with a thermal bath and contained only a
single molecule of gas. As the molecule bounces around, energetically equilibrating with the
walls, an intelligence can frictionlessly place a movable partition in the middle of the box,
configured so that when the gas molecule strikes it, it moves, doing work through a series
of pulleys. This requires the intelligence to know which side of the box the gas molecule is
on and hence measure the gas, so Szilard proposed an energetic cost of kT ln 2, where T is
the temperature and k is Boltzmann’s constant, to measurement that would balance out the
maximum work extractable. Once the energy loss associated with the act of measurement
is taken into account, he suggested, the second law is not violated.

Landauer (1961) reversed the operation of Szilard’s “engine” to argue that “erasing” a
memory unit rather than reading (measuring) it has a minimum energetic cost of kT ln 2.
To see how this works, note that one can view the one-molecule gas with the partition as a
kind of one-bit memory: if the gas molecule is on the left (resp. right), then the memory
reads “0” (resp. “1”). Regardless of the location of the gas molecule, the memory may be
reset to “0” by removing the partition, inserting it on the right-hand side of the box, and
then doing any work necessary to push it against the gas molecule to the center. What
is deemed essential to the “reset” is that the computational process it implements is irre-
versible, i.e., not an injective map on computational states. Thus any adequate physical
implementation of the computation cannot be injective either. Landauer argued – for what
has become known as his eponymous principle – that the energetic costs to resetting a bit
in any physical implementation of a computation must be bounded below by this amount,
kT ln 2. Assuming the validity of the second law of thermodynamics (instead of using Lan-
dauer’s principle to save it), no cyclic process can convert heat energy solely into work,
so any thermodynamical process associated with resetting a bit must also generate a mini-
mum amount of heat. Connecting computational processes and concepts of information with
thermodynamics, Landauer’s principle remains as provocative as it is controversial.17

17See Maroney (2009a) for a more thorough review of the controversial issues.

10

Introduction

6. Chapter summaries

Part I: The computability of physical systems and physical systems as

computers

Part I (Chapters 1–3) of the present volume addresses the relationship between physical sys-
tems and computational systems: In what senses are physical systems computable, and which
of them are computers or perform computations? The widest positive answer to the latter
question – namely, all physical systems – is found in the astounding thesis of pancomputa-
tionalism (cf. Section 4 of this Introduction). In “Ontic pancomputationalism,” Gualtiero
Piccinini and Neal G. Anderson clarify and consider arguments for the titular strong form of
this thesis, which asserts that all physical systems literally and fundamentally perform a com-
putation. That is to say, according to ontic pancomputationalism, the most basic description
and dynamics of a physical system is as a computational system performing a single, specific
computation. Piccinini and Anderson point out that ontic pancomputationalism also entails
an empirical thesis, that a computational formalism ought to be adequate for describing the
physical world. The demands on this formalism depend on whether the computational model
is discrete or quantum, both of which Piccinini and Anderson review. They argue that, in
spite of the provocative nature of ontic pancomputationalism, its empirical aspects are not
well supported by our current evidence, while its metaphysical aspects either collapse into
triviality or cannot explain the variety of physical systems actually observed.

Jack Copeland, Oron Shagrir, and Mark Sprevak continue the discussion of the relation
between physical and computational systems in their chapter, “Zuse’s thesis, Gandy’s thesis,
and Penrose’s thesis.” The titular three theses concern various ways in which physical systems
are or are not supposed to be computers or computable. Concerning Zuse’s thesis, which
states that the universe literally is a digital computer – in particular, a cellular automaton –
Copeland et al. focus on what they call the implementation problem: What kind of ontology
could the hardware implementing the universe’s computational process have? Surveying
four options to the problem – novel (or even non-physical) entities, instrumentalism, anti-
realism, and epistemic humility – they conclude that each is unsatisfactory, either failing to
answer the question or doing so only by the exorbitant postulation of new ontology. Gandy’s
thesis, meanwhile, concerns the computational capabilities of machines (cf. Section 4 of
this Introduction). Copeland et al. show that Gandy’s axiomatic formalization of machines
as DDMAs contains a hidden premise asserting a strong form of determinism, effectively
ruling out hypercomputational machines operating in relativistic spacetimes. Thus it is not
even successful in characterizing the computability of simple sorts of machines. Finally, they
consider the oppositely minded Penrose’s thesis, which asserts that the processes of the brain
are not Turing computable. Penrose’s argument for his thesis depends upon a controversial
application of Gödel’s incompleteness theorems. Copeland et al. point out that if Penrose’s
argument form is valid, then it in fact can be used to prove a much stronger thesis, that the
computational power of the human mind exceeds that of any hypercomputer. They show
that this reductio ad absurdum holds even when certain plausible modifications are made to
the thesis. But regardless of rationalistic arguments made to support it, they observe, it is
ultimately an empirical hypothesis for which we have yet little evidence.

Rossella Lupacchini continues the discussion of the computability of physical systems in

11

Michael E. Cuffaro and Samuel C. Fletcher

“Church’s thesis, Turing’s limits, and Deutsch’s principle” by tracing some of the historical
and conceptual threads that lead from Hilbert’s program for the foundations of mathematics
through the CTT on to Deutsch’s principle (for which see Sections 1 and 4 of this Introduc-
tion, respectively). She shows how Hilbert’s influential quest for objective understanding
in mathematics through the formalization of metamathematical notions such as “proof” en-
gaged Gödel, Herbrand, and Church in their early attempts at formalizing the concept of
effective calculability. It was only with the work of Post and Turing, which shifted focus
from defining which functions are supposed to be computable to which (calculative) pro-
cesses are supposed to be effective, that the connection between computability and physical
processes (however idealized) that could be harnessed by human users was made secure. As
Post wrote, “to mask this identification [of effective calculability with recursiveness or λ-
definability] under a definition hides the fact that a fundamental discovery in the limitations
of the mathematicizing [sic] power of Homo Sapiens has been made and blinds us to the need
of its continual verification” (Post 1936, p. 291). This perspective makes Deutsch’s Principle
– and his suggestion that a quantum computer ought to be the model for a universal finite
computer – quite natural once one substitutes a quantum physical substratum for computers
for a classical one.

Part II: The implementation of computation in physical systems

Chapters 4–6 of the volume concern issues related to the way that computations are im-
plemented in physical systems. In his chapter “How to make orthogonal positions parallel:
Revisiting the quantum parallelism thesis,” Armond Duwell begins this part of the book with
a discussion of quantum computation, that is, computation as it is implemented in quantum
mechanical systems and that takes advantage of the particular physical resources that those
systems provide. As was mentioned earlier, there is actually no consensus regarding which
physical resources are responsible for quantum speedup. Duwell considers two rival expla-
nations. The first, the quantum parallelism thesis (Duwell 2007a), asserts that quantum
computers are able to outperform classical computers by computing many values of a func-
tion simultaneously. Seemingly opposed to this is the idea that quantum computers can
outperform classical computers because the quantum logic associated with the state space
instantiated by a quantum system allows it to complete a computational task by performing
fewer, not more, computations than a classical system (Bub 2010).

Appealing to Gualtiero Piccinini’s (2015) mechanistic conception of computation, Duwell
argues that the seemingly opposite orientations of these positions stem from conflicting intu-
itions about how to appropriately describe the quantum systems that perform computational
tasks. He argues that these positions do not disagree, however, about the fundamental fea-
tures of quantum systems that give rise to quantum speedup. Guided by this insight, Duwell
argues that the quantum parallelism thesis can be formulated in a way that is both true and
does not appeal to controversial computational descriptions.

In “How is there a physics of information? On characterizing physical evolution as infor-
mation processing,” Owen J. E. Maroney and Christopher G. Timpson continue Part II by
focusing on the field called “The Physics of Information.” One of the core claims of this field
is that for every information-processing task there exists a fundamental physical resource
cost that is associated with it intrinsically. A significant challenge for the Physics of Infor-

12

Introduction

mation is that the existence of alternative physical models of information processing seems,
in fact, to make it impossible to associate such intrinsic physical resource costs. Rather, the
existence of alternative models seems to show that the details of physical instantiation cannot
be ignored. This threatens to undermine the very basis of an implementation-independent
Physics of Information.

To make sense of intrinsic resource cost claims, Maroney and Timpson propose a five-fold
criterion for determining when an information-processing task has been physically instanti-
ated: (i) the task’s logical states are adequately represented by physical states; (ii) these
physical states can be reliably initialized, and in fact have been on any particular occasion
in which a computation can be said to have taken place; (iii) the physical states evolve
equivalently, in a relevant sense, to the logical states they represent; (iv) the final physical
output of the task fixes its logical output and is of a kind that is readable to someone; and
(v) the process exhibits a certain amount of error tolerance. Maroney and Timpson take
criteria (ii) and (iv) to be especially crucial, and on that basis argue that there is a Physics
of Information, not because information itself is physical, but because physically embodied
agents are able to carry out information-processing tasks.

Part II ends with “Abstraction/Representation theory and the natural science of com-
putation,” by Dominic Horsman, Viv Kendon, and Susan Stepney. As with the previous
chapter, Horsman et al. aim to present a number of criteria for determining when a physical
process instantiates a computation. However they also argue that these criteria unite compu-
tation with prediction and engineering. Their framework, Abstraction/Representation (AR)
theory, contains the following components: scientific theory, computational theory, encoding
and decoding of a scientific problem in a computational model, and instantiation of a compu-
tational problem in a physical system. These components take on different forms depending
on the kind of computation one is discussing, so that AR theory is capable of describing
vastly different kinds of physical computation. For example, it can describe classical digital
computation, including how transistors and other hardware components implement classical
computational models such as the von Neumann architecture, and how programming lan-
guages, compilers, and other software components can make use of this hardware. And it can
also describe the unconventional model of “slime-mold computation,” wherein how a slime
mold reacts to food sources being placed in its vicinity implements the abstract problem of
finding the shortest path through a maze.

According to AR theory, physically carrying out a computation is analogous to doing
science, in the sense that both practices involve a representational relation between physical
objects and abstract mathematico-logical objects. In each case this presupposes a represen-
tational entity. In the natural sciences this can be an experimenter, or perhaps a theorist.
In the case of a computational process this can be, for example, a programmer, high-level
designer, or end-user. In seeming contrast to the view of Maroney and Timpson, however,
the representational entity need not embody a rich conception of agency.

Part III: Physical perspectives on computer science

Chapters 7–9 of this volume concern the question of how physical theory can illuminate the
theory of computation. In “Physics-like models of computation,” Klaus Sutner argues that
insight into the nature of computability theory can be gained by carefully studying what he

13

Michael E. Cuffaro and Samuel C. Fletcher

refers to as “physics-like” computational models. Such models have been constructed with
an eye to their possible physical realization and include, for example, the ordered partition
automaton and its variants. Sutner’s aim is not to argue that computer science should
become a part of physics. He rather makes the compelling argument that the study of
physical computation is potentially very fruitful for computer science, and that it has not
received sufficient attention to date.

Sutner contrasts such studies of physics-like computation with classical recursion theory.
He argues that classical recursion theory is not only isolated from physics but also from much
of mathematics (including discrete mathematics), in that there has been little exchange of
results and techniques between the two disciplines. On the other hand, Sutner argues that
there are problems in the theory of computation that stand to profit much from the study
of physical computation. He shows, in particular, how a physics-like model of computation
(the elementary cellular automaton number 110) produced the first instance of a universal
system that was discovered, rather than designed. He also shows how considering the issue
of physical realization leads to insight into the old problem of the epistemological status of
intermediate recursively enumerable degrees.

In the next chapter, “Feasible computation: Methodological contributions from compu-
tational science,” Robert H. C. Moir explains how, in contemporary usage, “computational
science” has come to refer to a number of different forms of scientific computing. In essence,
computational science in this sense is concerned with generating “feasible algorithms” for
solving mathematical problems, and unlike traditional computability theory, it can involve
numerical methods and hybrid symbolic-numeric methods in addition to symbolic computa-
tion. Also, and importantly, unlike traditional computability theory, the feasible algorithms
of computational science generally involve the use of approximation extensively.

Moir describes, at length, how the historical roots of approximation methods in com-
putational science can be traced back to the eighteenth- and nineteenth-century techniques
developed by physicists to overcome the calculational limitations of their theoretical represen-
tations of physical phenomena (for example, in fluid mechanics and astronomy). Moir shows
how the use of such approximation methods allowed physicists to extract crucial information
from their theoretical models even when exact solutions were not at hand.

Moir reveals how the central strategy used in computational science for developing ap-
proximation algorithms itself has an algorithmic structure, and that a version of this strategy
underlies symbolic computing. This has consequences for traditional computability theory;
Moir argues that it motivates the development of a theory of “higher-order” computation,
leads to a different way of thinking about computational complexity, and points the way
to a possible expansion of the theory of computation towards encompassing aspects of the
methodology and epistemology of scientific inference.

Part III of the book ends with “Relativistic computation,” by Hajnal Andréka, Judit X.
Madarász, István Németi, Péter Németi, and Gergely Székely. Andréka et al. describe the
challenge to the physical CTT that is posed by computational systems which take advantage
of the possibilities inherent in the spacetimes allowed by general relativity.

In particular, they describe a thought experiment involving a physical computer com-
posed of a TM, on the one hand, and a spaceship carrying a programmer, on the other,
operating in the general relativistic spacetime associated with a huge slowly rotating black
hole. Features of the spacetime associated with such a black hole make it so that our pro-

14

Introduction

grammer can survive entry into its inner event horizon intact. Because of the gravitational
time dilation effect of general relativity, which causes clocks in stronger gravitational fields
to run more slowly, in a sense, than those in weaker such fields, we can design our com-
putational system so that, in the finite time before the programmer enters the inner event
horizon, she is able to receive the results of an infinitely long computation carried out by the
distant TM.

Fascinatingly, Andréka et al. argue that such a computer could be realized by a con-
ceivable future civilization. In particular, they argue that such a computer could be made
error-tolerant, that limitations with respect to the transfer of information between the TM
and the programmer can be overcome, and that the spacetimes which make possible such a
computational system are physically realistic.

Part IV: Computational perspectives on physical theory

Part IV (Chapters 10–12) concerns the potential illumination – and distraction – that may
result from considering physical theory from a computational perspective. In particular, the
first two chapters of this part concern the status of Landauer’s principle (which is adum-
brated in Section 5 of this Introduction). James Ladyman brings accounts of computational
implementation to bear on the debate over whether Landauer’s principle follows from the
second law of thermodynamics in “Intension in the physics of computation: Lessons from
the debate about Landauer’s principle.” Ladyman’s focus is on the dialectic between the
results of Ladyman et al. (2007), which seek to prove a general, sound version of Landauer’s
principle, and the critique thereof by Norton (2011). In particular, Ladyman argues that
Norton’s rebuttal to the proof can be blocked once one requires that the implementation
of a computation in a physical system be intensional, or modally robust: It must support
counterfactuals describing that the same function or logical operation would have been com-
puted, but with a different input, had the initial state of the physical system been different.
This also requires a non-dynamical (or “control theory”) perspective on thermodynamics
that views the theory – and Landauer’s Principle – as concerning what human agents can
do to systems with their typically limited knowledge of the system’s detailed microstates.
Thus, an account of computation that concerns human abilities and knowledge reveals how
thermodynamics is bound in similar ways.

In contrast with Ladyman, John D. Norton describes how, in the literature on Maxwell’s
demon (also described in Section 5 of this Introduction), the historical focus on exorcising
the demon by considering its computational powers has been a mistake. In particular, he
argues that this focus has distracted us, for decades, from a simpler and more satisfying
solution which only makes use of concepts from physical theory. His punning title puts it
simply: “Maxwell’s demon does not compute.” Norton begins by reviewing the history of the
demon and its naturalization – versions which use an explicit physical mechanism instead of
the fanciful demon – arguing that such naturalized demons, lacking any obvious embodiment
of intelligent or computational capacity, controvert claims to a general exorcism using com-
putational ideas. Despite this, influential work by Szilard (1972 [1929]) and Landauer (1961)
drew the physics community’s attention away from more directly physical ideas towards
more speculative ones that, Norton’s argues, have produced more heat than light. Norton
then extends previous work (Norton 2013a) exorcising the classical demon using Liouville’s

15

Michael E. Cuffaro and Samuel C. Fletcher

theorem to a quantum version, comparing the steps of the arguments in detail. Essential to
the argument is an analogy between phase space volume, in the classical case, and Hilbert
subspace dimension, in the quantum case. If a putative naturalized quantum demon is to
act on an equilibrium state occupying a subspace of dimension almost as large as that of its
complete Hilbert space, and the intermediate states into which the demon drives the system
occupy instead a small subspace, then the demon will always fail in its task.

In the final chapter, “Quantum theory as a principle theory: Insights from an information-
theoretic reconstruction,” Adam Koberinski and Markus P. Müller argue that recasting phys-
ical theory in terms of principles about information and computation yields additional ex-
planatory power about the nature of the (quantum) physical world. In particular, they
explicate a recent derivation of finite-dimensional quantum theory from the following princi-
ples: the state and time evolution of every physical system can be reversibly encoded into a
number of interacting “universal bits”; the time evolution of these systems is reversible and
continuous; states of composite systems are uniquely determined by those of their compo-
nents and the correlations between them; and one universal bit can carry no more than one
binary unit of information. This principle-theory framework (sensu Einstein [1954]) they
argue, provides a partial interpretation of quantum theory in the sense that it describes
in part what the world would be like if the theory were true: The world is fundamentally
restricted with respect to how physical systems can transform information (i.e., perform com-
putations). It is only partial, however, at least because it is agnostic on the interpretation of
the quantum state. Accordingly, Koberinski and Müller outline three options for completing
the interpretation, but argue that each one poses a challenge for interpreting the quantum
state as representing a feature of the world rather than a feature of our knowledge about
the world (i.e., for so-called ψ-ontic interpretations rather than ψ-epistemic ones). They
conclude by suggesting that the principle of continuous reversible time evolution should be
given more attention than it has heretofore received, as it may prove surprisingly central in
future efforts to characterize what makes quantum theories different from classical ones.

16

