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But trivialities like this, you will exclaim, are of no interest in
consumer research! (Bell, 2004 [1981]).

For a system in the singlet state (|Ψ−〉), the expectation value for joint ex-
periments on its subsystems is given by the following expression:

〈σm ⊗ σn〉 = −m̂ · n̂ = − cos θ. (1)

Here σm, σn represent spin-m and spin-n experiments on the first (Alice’s)
and second (Bob’s) subsystem, respectively, with m̂, n̂ the unit vectors repre-
senting the orientations of the two experimental devices, and θ the difference
in these orientations. Note, in particular, that when θ = 0, 〈σm ⊗ σn〉 =
−1 (i.e., experimental results for the two subsystems are perfectly anti-
correlated), when θ = π, 〈σm⊗σn〉 = 1 (i.e., experimental results for the two
subsystems are perfectly correlated), and when θ = π/2, 〈σm⊗ σn〉 = 0 (i.e.,
experimental results for the two subsystems are not correlated at all).

Consider the following attempt (Bell, 2004 [1964]) to reproduce the quan-
tum mechanical predictions for this state by means of a hidden variables
theory. Let the hidden variables of the theory assign, at state prepara-
tion, to each subsystem of a bipartite quantum system, a unit vector λ̂ (the
same value for λ̂ is assigned to each subsystem) which determines the out-
comes of subsequent experiments on the system as follows. Let the functions



Aλ(m̂), Bλ(n̂) represent, respectively, the outcome of a spin-m and a spin-n
experiment on Alice’s and Bob’s subsystem. Define these as:

Aλ(m̂) = sign(m̂ · λ̂),

Bλ(n̂) = −sign(n̂ · λ̂),

where sign(x) is a function which returns the sign (+, -) of its argument.
The reader can verify that the probability that both Aλ(m̂) and Bλ(n̂)

yield the same value, and the probability that they yield values that are dif-
ferent (assuming a uniform probability distribution over λ̂), are respectively:

Pr(+,+) = Pr(−,−) = θ/2π,

Pr(+,−) = Pr(−,+) =
1

2

(
1− θ

π

)
,

with θ the (positive) angle between m̂ and n̂. This yields, for the expectation
value of experiments on the combined state:

〈σm ⊗ σn〉 =
2θ

π
− 1.

When θ is a multiple of π/2, this expression yields predictions identical to
the quantum mechanical ones: perfect anti-correlation for θ ∈ {0, 2π, ...}, no
correlation for θ ∈ {π/2, 3π/2, ...}, and perfect correlation for θ ∈ {π, 3π, ...}.
However, for all other values of θ there are divergences from the quantum
mechanical predictions.

It turns out that this is not a special characteristic of the simple hidden
variables theory considered above. No hidden variables theory is able to re-
produce the predictions of quantum mechanics if it makes the very reasonable
assumption that the probabilities of local experiments on Alice’s subsystem
(and likewise Bob’s) are completely determined by Alice’s local experimen-
tal setup together with a hidden variable taken on by the subsystem at the
time the joint state is prepared.1 Consider the following2 expression relat-
ing different spin experiments on Alice’s and Bob’s respective subsystems for
arbitrary directions m̂, m̂′, n̂, n̂′:

|〈σm ⊗ σn〉+ 〈σm ⊗ σn′〉|+ |〈σm′ ⊗ σn〉 − 〈σm′ ⊗ σn′〉|. (2)

1It is also (reasonably) assumed that Alice’s and Bob’s local measurements occur at
spacelike and not timelike separation. For further discussion, see: Kent (2005).

2In this exposition of the CHSH inequality I have followed Myrvold (2008).

2



As before, let Aλ(m̂) ∈ {±1}, Bλ(n̂) ∈ {±1} represent the results, given
a specification of some hidden variable λ, of spin experiments on Alice’s
and Bob’s subsystems. We make no assumptions about the nature of the
‘common cause’ λ this time—it may take any form. What we do assume is
that, as I mentioned above, the outcomes of Alice’s experiments depend only
on her local setup and on the value of λ; i.e., we do not assume any further
dependencies between Alice’s and Bob’s local experimental configurations.
This ‘factorisability’ allows us to substitute 〈Aλ(m̂) · Bλ(n̂)〉 for 〈σm ⊗ σn〉,
thus yielding:∣∣〈Aλ(m̂)Bλ(n̂)

〉
+
〈
Aλ(m̂)Bλ(n̂

′)
〉∣∣ +

∣∣〈Aλ(m̂′)Bλ(n̂)
〉
−
〈
Aλ(m̂

′)Bλ(n̂
′)
〉∣∣

=
∣∣〈Aλ(m̂)

(
Bλ(n̂) +Bλ(n̂

′)
)〉∣∣ +

∣∣〈Aλ(m̂′)(Bλ(n̂)−Bλ(n̂
′)
)〉∣∣

≤
〈∣∣Aλ(m̂)

(
Bλ(n̂) +Bλ(n̂

′)
)∣∣〉 +

〈∣∣Aλ(m̂′)(Bλ(n̂)−Bλ(n̂
′)
)∣∣〉,

which, since |Aλ(·)| = 1, is

≤
〈∣∣Bλ(n̂) +Bλ(n̂

′)
∣∣〉 +

〈∣∣Bλ(n̂)−Bλ(n̂
′)
∣∣〉

≤ 2,

where the last inequality follows from the fact that Bλ(·) can also only take on
values of ±1. This expression, a variant of the ‘Bell inequality’ (2004 [1964]),
is known as the Clauser-Horne-Shimony-Holt (CHSH) inequality (cf., Clauser
et al., 1969; Bell, 2004 [1981]).

Quantum mechanics violates the CHSH inequality for some experimental
configurations. For example, let the system be in the singlet state; i.e., such
that its statistics satisfy (1); and let the unit vectors m̂, m̂′, n̂, n̂′ (taken to lie
in the same plane) have the orientations 0, π/2, π/4,−π/4 respectively. The
differences, θ, between the different orientations (i.e., m̂− n̂, m̂− n̂′, m̂′ − n̂,
and m̂′ − n̂′) will all be in multiples of π/4 and we will have:

〈σm ⊗ σn〉 = 〈σm ⊗ σn′〉 = 〈σm′ ⊗ σn〉 =
√

2/2,

〈σm′ ⊗ σn′〉 = −
√

2/2,

|〈σm ⊗ σn〉+ 〈σm ⊗ σn′〉|+ |〈σm′ ⊗ σn〉 − 〈σm′ ⊗ σn′〉| = 2
√

2 6≤ 2.

The predictions of quantum mechanics for arbitrary orientations m̂, m̂′, n̂, n̂′

cannot, therefore, be reproduced by a hidden variables theory in which all
correlations between subsystems are due to a common parameter endowed
to them at state preparation. They can, however, be reproduced by such a
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hidden variables theory for certain special cases. In particular, the inequality
is satisfied (as the reader can verify) when m̂ and n̂, m̂ and n̂′, m̂′ and n̂,
and m̂′ and n̂′ are all oriented at angles with respect to one another that are
given in multiples of π/2.
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