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Abstract

On the Physical Explanation for Quantum Computational Speedup

Michael E. Cuffaro

The aim of this dissertation is to clarify the debate over the explanation of

quantum speedup and to submit, for the reader’s consideration, a tentative

resolution to it. In particular, I argue, in this dissertation, that the physical

explanation for quantum speedup is precisely the fact that the phenomenon of

quantum entanglement enables a quantum computer to fully exploit the

representational capacity of Hilbert space. This is impossible for classical systems,

joint states of which must always be representable as product states.

I begin the dissertation by considering, in Chapter 2, the most popular of the

candidate physical explanations for quantum speedup: the many worlds explanation

of quantum computation. I argue that, although it is inspired by the neo-Everettian

interpretation of quantum mechanics, unlike the latter it does not have the

conceptual resources required to overcome objections such as the so-called ‘preferred

basis objection’. I further argue that the many worlds explanation, at best, can

serve as a good description of the physical process which takes place in so-called

network-based computation, but that it is incompatible with other models of

computation such as cluster state quantum computing. I next consider, in Chapter

3, a common component of most other candidate explanations of quantum speedup:

quantum entanglement. I investigate whether entanglement can be said to be a

necessary component of any explanation for quantum speedup, and I consider two

major purported counter-examples to this claim. I argue that neither of these, in

fact, show that entanglement is unnecessary for speedup, and that, on the contrary,

we should conclude that it is. In Chapters 4 and 5 I then ask whether entanglement

can be said to be sufficient as well. In Chapter 4 I argue that despite a result that

seems to indicate the contrary, entanglement, considered as a resource, can be seen

as sufficient to enable quantum speedup. Finally, in Chapter 5 I argue that

entanglement is sufficient to explain quantum speedup as well.

Keywords: quantum speedup, quantum computation, quantum computing,

quantum information theory, quantum entanglement, quantum parallelism, many

worlds explanation, many worlds interpretation, cluster state, necessity of

entanglement, sufficiency of entanglement, how-possibly questions.
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Chapter 1

Overview

1.1 Introduction

Of the many and varied applications of quantum information theory, perhaps the

most fascinating is the sub-field of quantum computation. In this sub-field,

computational algorithms are designed which utilise the resources available in

quantum systems to compute solutions to computational problems with, in some

cases, exponentially fewer resources than any known classical algorithm. But while

the fact of quantum computational speedup is almost beyond doubt,1 the source of

quantum speedup is still a matter of debate. Candidate explanations of quantum

speedup range from the purported ability of quantum computers to perform

multiple function evaluations simultaneously (Deutsch, 1997; Duwell, 2004;

Hewitt-Horsman, 2009) to the purported ability of a quantum computer to compute

a global property of a function by performing fewer, not more, computations (e.g.

Steane, 2003; Bub, 2010) than classical computers.

The aim of this dissertation is to clarify this debate and to submit, for the

reader’s consideration, a tentative resolution to it. In the following pages I will

argue that the explanation for quantum speedup is precisely the following. The

phenomenon of quantum entanglement enables a quantum computer to fully exploit

the representational capacity of Hilbert space. This is impossible for classical

systems, joint states of which must always be representable as product states. Since

the number of distinct product states of n-fold d-dimensional systems is

1Just as with other important problems in computational complexity theory, such as the P =

NP problem, there is currently no proof, though it is very strongly suspected to be true, that the

class of problems efficiently solvable by a quantum computer is larger than the class of problems

efficiently solvable by a classical computer (cf. Appendix A).
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exponentially fewer than the total number of states representable in the

corresponding Hilbert space, a classical computer will, in general, require

exponentially more steps than a quantum computer to solve a computational

problem that requires one to take full advantage of this representational capacity.

1.2 Synopsis of this dissertation

1.2.1 Chapter summaries

Chapter 2

Chapter 2 examines what is arguably the most well-known of the candidate

explanations for quantum speedup: the so-called many worlds explanation of

quantum computation. This explanation of quantum computation draws its

inspiration from the many-worlds interpretation of quantum mechanics. According

to this explanation, when a quantum computer effects a transition such as:

2n−1
∑

x=0

|x〉|0〉 →
2n−1
∑

x=0

|x〉|f(x)〉, (1.1)

it literally performs, simultaneously and in different physical worlds or universes,

local function evaluations on all of the possible values of x.

The many worlds explanation is, on the one hand, very attractive as an

explanation of quantum speedup. If one takes the transition (1.1) at face value, i.e.,

as exhibiting the fact that the quantum computer is actually physically performing,

somehow, multiple function evaluations of different values of x, then the many

worlds explanation directly answers the question of where this parallel processing is

occurring (i.e., in distinct physical universes) in a way in which other explanations

do not. Thus it is, plausibly, the most intuitive explanation of quantum speedup.

As I argue in this chapter, however, the many worlds explanation, unlike the

many worlds interpretation of quantum mechanics from which it is inspired, cannot

avail itself of many of the arguments which appeal to decoherence as a criterion for

distinguishing worlds in order to address the so-called preferred basis objection. The

criterion for world decomposition that is adopted (as a substitute for decoherence)

by advocates of the many worlds explanation, meanwhile, cannot fulfil this role

except in an ad hoc way.

A second, perhaps more significant, problem for the many worlds explanation is
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the relatively recent development of an alternative model of quantum computation:

the cluster state model. The standard network model (also known as the ‘circuit’

model) and the cluster state model are computationally equivalent in the sense that

one can be used to efficiently simulate the other; but while an explanation of the

network model in terms of many worlds seems (prima facie, at least) intuitive and

plausible, this is far from being true for the case of cluster state computation.

Indeed, as I will argue, the many worlds explanation of quantum computing is, in an

important sense, incompatible with the cluster state model.

Based on these considerations I conclude that we must reject the many worlds

explanation.

Chapter 3

Given that we must reject the popular many worlds explanation, the question arises

as to whether any of the other candidate explanations for quantum speedup are

correct. When one examines these apparently disparate explanations, however, one

finds that each of them (and the many worlds explanation as well, in fact) include a

central role for the phenomenon of quantum entanglement. Given this, the question

then arises as to whether entanglement can be said to be a necessary element of any

candidate explanation for quantum speedup.

On the one hand, a positive answer to this question is supported by the well

known theoretical result (Jozsa & Linden, 2003) that when one restricts oneself to

computation over pure states, one requires a quantum computer to be in an

entangled state in order to achieve a quantum speedup over classical computation.

On the other hand it is not clear that the same holds true for mixed states. In

particular, it seems as though it is possible to achieve a modest (sub-exponential)

speedup over classical computation using certain mixed states which are, by

definition, unentangled. Additionally, it seems as though it is possible to achieve a

substantial (i.e., exponential) speedup over classical computation using certain

mixed states that contain only a vanishingly small amount of entanglement. In light

of these results, it is tempting to conclude that one need not appeal to entanglement

after all in order to explain quantum speedup.

Despite these purported counter-examples, I argue in this chapter that such a

conclusion is premature. In the first type of counterexample, where sub-exponential

speedup has been demonstrated with unentangled mixed states, it can be argued,

and I do argue, that when one considers the initially mixed state of the computer as

representing a space of possible pure state preparations for the system, it is evident
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that the speedup obtainable from this system stems from the fact that the quantum

computer evolves some of these possible pure state preparations to entangled states.

As for the second type of counter-example, where exponential speedup is achieved

with only a vanishingly small amount of entanglement (thus bringing into doubt its

efficacy and thus its necessity for enabling quantum speedup), I argue that when

one considers the pure state representation of the initial state of such a system, in

which the system’s correlations with the environment are included as part of the

overall description of the system, then the role that entanglement plays in the

speedup displayed by the system is both clarified and indeed confirmed by recent

research on the physical characteristics of such systems. Since pure states, as I also

argue, represent a more fundamental representation of quantum systems than mixed

states, one should conclude that entanglement is necessary for the speedup

exhibited by such systems.

Chapter 4

If it is concluded that entanglement is a necessary component in any explanation of

quantum speedup, then the natural next question to ask is whether it is also

sufficient. In this chapter I begin to answer this question by first asking whether

entanglement can be said to be a sufficient physical resource for enabling quantum

speedup.

The answer to this question is commonly held to be no. According to the

Gottesman-Knill theorem (Nielsen & Chuang, 2000, 464), any quantum algorithm

or protocol which exclusively utilises the elements of a certain restricted set of

quantum operations can be efficiently simulated by classical means. Yet, since some

of the algorithms and protocols falling into this category involve entangled states, it

is usually concluded that entanglement cannot, therefore, be sufficient to enable

quantum speedup.

In this short chapter I argue that this conclusion is misleading. As I explain, the

quantum operations to which the Gottesman-Knill theorem applies are precisely

those which will never yield a violation of the Bell inequalities, for they all involve

rotations of the Bloch sphere representation of the state space for a single qubit

given in multiples of π/2. It is well known, however, that the correlations present in

entangled quantum systems whose subsystems always take on orientations with

respect to one another that are multiples of π/2 are reproducible by a classical

hidden variables theory. Thus it should be no surprise that entangled quantum

states which only undergo operations in the Gottesman-Knill group of operations
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are efficiently simulable by a classical computer.

What the Gottesman-Knill theorem shows us, I argue, is that one must use an

entangled quantum state to its full potential in order to achieve a quantum speedup;

if one only utilises the portion of the system’s state space efficiently accessible by a

classical system, no speedup will be achieved, even when the system is entangled.

Nevertheless, there is a meaningful sense in which an entangled quantum state is

sufficient for quantum speedup: an entangled quantum state provides sufficient

physical resources to enable quantum speedup, whether or not one elects to use

these resources to their full potential.

Chapter 5

In this chapter I address the questions of whether and in what sense entanglement is

sufficient to explain quantum computational speedup. I begin by distilling the

argumentation of the previous chapters into the tentative explanation for quantum

speedup that I gave above; i.e., that since the state spaces available to classical

systems are exponentially smaller than those available to quantum systems, one

requires, in general, exponentially more resources to simulate a quantum system by

classical means. I argue that this explanation can be taken as explanatory in the

following sense: just as the essential physical characteristics of classical

computational systems can be taken, in computability theory and in computational

complexity theory, to be explanations of their computational capabilities—of how it

is possible that such systems are able to compute particular classes of problems

using a specified number of resources—, so can the essential physical characteristics

of quantum computational systems be so taken. These essential characteristics are,

just as for classical systems, the properties of the states and state transitions

available to quantum systems.

In the remainder of the chapter I argue that this candidate explanation for

quantum speedup is compatible with accounts of physical explanation that require

explanations to be causal in nature. In particular, I consider a challenge to the view

that entanglement itself can be given a causal physical explanation: an argument,

due to Stachel (1997), that entanglement should not be characterised as essentially

involving physical interactions, but rather as arising from a more abstract set of

requirements. I argue that these abstract requirements themselves can be accounted

for in terms of physical interactions, and that the notion of physical interaction

involved in the description of entangled quantum systems can therefore be made

compatible with a suitably intuitive notion of causation.
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1.2.2 Common chapter elements

Chapters 2, 3, and 4 include a “Preliminaries” and a “Next steps” section, which

follow upon the chapter introduction and chapter conclusion, respectively. The

“Preliminaries” section contains some of the technical details that are required in

order to comprehend the argumentation of the chapter. They are placed in this

section for ease of reference, as they will often be referred to in subsequent chapters.

Readers already familiar with these technical details may skim—but not skip—this

section. The purpose of the “Next steps” section is to link the content of the current

chapter to the subject matter and argumentation that are to be pursued in the next.

The reader will also occasionally be referred to the appendices. These contain

more detailed discussions of various technical topics which are useful for

comprehending the overall argument of the dissertation, but inessential to its

exposition.

1.3 Basic terminology and notational conventions

Qubit. A qubit is the basic unit of quantum information, analogous to a classical

bit. It can be physically realised by any two-level quantum mechanical system. Like

a bit, it can be “on” or “off”, but unlike a bit it can also be in a superposition of

these values.

Computational basis. The computational, or classical, basis for a single qubit is

the basis {|0〉, |1〉}, which can be used to represent the classical bit states {↑, ↓},
where |0〉 = ( 1

0 ) , and |1〉 = ( 0
1 ) .

+,- basis. An alternative basis for representing qubits is the basis {|+〉, |−〉},
where |+〉 = 1√

2
( 1
1 ) =

|0〉+|1〉√
2
, and |−〉 = 1√

2
( 1
−1 ) =

|0〉−|1〉√
2
.

Bloch sphere. A geometrical representation of the state space of a single qubit.

States on the surface of the sphere represent pure states, while those in the interior

represent mixed states.

Tensor product notation. For brevity, I will usually omit the tensor product

symbol from expressions for states of multi-partite systems; i.e., |αβ〉 and |α〉|β〉
should be understood as shorthand forms of |α〉 ⊗ |β〉. Additionally, all of the
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following should be taken to be equivalent:

|α〉1 ⊗ |α〉2 ⊗ ...|α〉n ≡ |α〉1|α〉2...|α〉n ≡ |αn〉 ≡ |α〉n ≡ |α〉⊗n.

Quantum gates. In the network model of quantum computation, logic gates are

implemented as unitary transformations. Some common gates are:

• the H or Hadamard gate, which takes |0〉 to |0〉+|1〉√
2

and |1〉 to |0〉−|1〉√
2

and

vice-versa;

• the NOT gate, implemented by the Pauli-X transformation, which takes |0〉
to |1〉 and |1〉 to |0〉;

• the CNOT or controlled-not gate. This gate takes two qubits |c〉|t〉 to
|c〉|t⊕ c〉, where |c〉 is the control, |t〉 the target qubit, and ⊕ is addition

modulo 2 (i.e., ‘exclusive-or’). Intuitively, the control qubit determines

whether or not to apply a bit-flip operation (i.e., a NOT operation) to the

target qubit.

Network model of quantum computation. Also called the circuit model, this

is the standard model of quantum computation, in which qubits contained in

quantum registers are used as inputs to quantum gates arranged in a network

structure (analogous to the circuit model of classical computation). For instance, the

following is a network specification of the teleportation protocol (cf. Appendix C):

|ψ〉a • H
NM








M1

•

��������
NM








M2

•
|Φ+〉ab {

XM2 ZM1 |ψ〉b
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Chapter 2

The Many Worlds Explanation of

Quantum Computation1

2.1 Introduction

The source of quantum computational speedup—the ability of a quantum computer

to achieve, for some problem domains,2 a dramatic reduction in processing time over

any known classical algorithm—is still a matter of debate. On one popular view

(the ‘quantum parallelism thesis’3), the speedup is due to a quantum computer’s

ability to simultaneously evaluate (using a single circuit) a function for many

different values of its input. Thus one finds, in textbooks on quantum computation,

pronouncements such as the following:

[a] qubit can exist in a superposition of states, giving a quantum

1This chapter is a revised version of the previously published work, “Many Worlds, the

Cluster-state Quantum Computer, and the Problem of the Preferred Basis” (Cuffaro, 2012). Full

bibliographic details are given at the end of this dissertation.
2An important example is the factoring problem. Factoring is in the complexity class FNP;

i.e., the class of all function problems associated with languages in NP (cf. Papadimitriou 1994,

§10.3, and also Appendix A). It is also in the class BQP, the class of problems solvable by a

quantum computer in polynomial time, as was shown by Shor (1997). The significance of the latter

is that the quantum solution to factoring represents an exponential speedup over the best known

classical factoring algorithm. Shor’s algorithm has received much attention as a result of its

important practical implications; it demonstrates, for instance, that quantum computers can easily

break certain widely used internet encryption schemes. In this dissertation we will not directly

discuss Shor’s algorithm, however. For our purposes, no generality is lost, and ease of

comprehension is gained, by focusing on simpler algorithms such as the Deutsch-Jozsa algorithm.
3I am indebted to Duwell (2007) for this label.
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computer a hidden realm where exponential computations are possible ...

This feature allows a quantum computer to do parallel computations

using a single circuit—providing a dramatic speedup in many cases

(McMahon, 2008, p. 197).

Unlike classical parallelism, where multiple circuits each built to

compute f(x) are executed simultaneously, here a single f(x) circuit is

employed to evaluate the function for multiple values of x

simultaneously, by exploiting the ability of a quantum computer to be in

superpositions of different states (Nielsen & Chuang, 2000, p. 31).

Among textbook writers, N. David Mermin is, perhaps, the most cautious with

respect to the significance of this ‘quantum parallelism’:

One cannot say that the result of the calculation is 2n evaluations of f ,

though some practitioners of quantum computation are rather careless

about making such a claim. All one can say is that those evaluations

characterize the form of the state that describes the output of the

computation. One knows what the state is only if one already knows the

numerical values of all those 2n evaluations of f . Before drawing

extravagant practical, or even only metaphysical, conclusions from

quantum parallelism, it is essential to remember that when you have a

collection of Qbits in a definite but unknown state, there is no way to

find out what that state is (2007, p. 38).

Mermin’s reservations notwithstanding, the quantum parallelism thesis is

frequently associated with (and held to provide evidence for) the many worlds

explanation of quantum computation, which draws its inspiration from the

Everettian interpretation of quantum mechanics. According to the many worlds

explanation of quantum computing, when a quantum computer effects a transition

such as:

2n−1
∑

x=0

|x〉|0〉 →
2n−1
∑

x=0

|x〉|f(x)〉, (2.1)

it literally performs, simultaneously and in different physical worlds, local function

evaluations on all of the possible values of x.

It is all well to say that a quantum computer evaluates a function simultaneously

for many different values of its domain; but one should also give some physical
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explanation of how this occurs. The many worlds explanation attempts to do just

that; it directly answers the question of where this parallel processing occurs: in

distinct physical universes. For this reason it is also, arguably, the most intuitive

physical explanation of quantum speedup. Indeed, for some, the many worlds

explanation of quantum computing is the only possible physical explanation of

quantum speedup. David Deutsch, for instance, writes: “no single-universe theory

can explain even the Einstein-Podolsky-Rosen experiment, let alone, say, quantum

computation. That is because any process (hidden variables, or whatever) that

accounts for such phenomena ... contains many autonomous streams of information,

each of which describes something resembling the universe as described by classical

physics” (2010, p. 542). Deutsch issues a challenge to those who would explain

quantum speedup without many worlds: “[t]o those who still cling to a

single-universe world-view, I issue this challenge: Explain how Shor’s algorithm

works” (1997, p. 217).

Recently, the development of an alternative model of quantum

computation—the cluster state model—has cast some doubt on these claims. The

standard network model (which I will also refer to as the ‘circuit’ model) and the

cluster state model are computationally equivalent in the sense that one can be used

to efficiently simulate the other; however, while an explanation of the network

model in terms of many worlds seems intuitive and plausible, it has been pointed

out by Steane (2003, pp. 474-475), among others, that it is by no means natural to

describe cluster state computation in this way.

While Steane is correct, I will argue that the problem that the cluster state

model presents to the many worlds explanation of quantum computation runs

deeper than this. I will argue that the many worlds explanation of quantum

computing is not only unnatural as an explanation of cluster state quantum

computing, but that it is, in fact, incompatible with it.4 I will show how this

4My use of the word ‘incompatible’ might strike some readers as a touch strong. I do not mean

to convey by this any in-principle impossibility, however. Rather, I take it that any worthwhile

explanation of a process should provide some useful insight into its workings, and should be

motivated by the characteristics of the process, not by predilections for a particular type of

explanation on the part of the explainer. My claim here is that, as I will show below, a many

worlds explanation of cluster state quantum computing is completely unmotivated and useless even

as a heuristic device for describing cluster state quantum computation, and is in this sense

incompatible with it. One might call this type of incompatibility ‘for-all-practical-purposes

incompatibility’. Since, as we shall see later, the criterion used for identifying worlds on the many

worlds explanation of quantum computation is a for-all-practical-purposes criterion, this is just the
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incompatibility is brought to light through a consideration of the familiar preferred

basis problem, for a preferred basis with which to distinguish the worlds inhabited

by the cluster state neither emerges naturally as the result of a dynamical process,

nor can be chosen a priori in any principled way.

In addition, I will argue that the many worlds explanation of quantum

computing is inadequate as an explanation of even the standard network model of

quantum computation. This is because, first, unlike its close cousin, the

neo-Everettian many worlds interpretation of quantum mechanics,5 where the

decoherence criterion is able to fulfil the role assigned to it, of determining the

preferred basis for world decomposition with respect to macro experience,6 the

corresponding criterion for world decomposition in the context of quantum

computing cannot fulfil this role except in an ad hoc way. Second: alternative

explanations of quantum computation exist which, unlike the many worlds

explanation, are compatible with both the network and cluster state model.

The quantum parallelism thesis, and the many worlds explanation of quantum

computation that is so often associated with it, are undoubtedly of great heuristic

value for the purposes of algorithm analysis and design, at least with regard to the

network model. This is a fact which I should not be misunderstood as disputing.

What I am disputing is that we should therefore be committed to the claim that

these computational worlds are, in fact, ontologically real, or that they are

indispensable for any explanation of quantum speedup.

The chapter will proceed as follows. I begin, in §2.2, with an example, often used

to motivate the quantum parallelism thesis and the associated many worlds

explanation, of a simple quantum algorithm specified using the network model of

right sort of incompatibility that must prove problematic for the many worlds explanation.
5One should be wary not to treat the ‘Everettian’ interpretation of quantum mechanics as if it

were a unified view. Rather, ‘Everettian’ more properly describes a family of views (see Barrett

2011 for a list and discussion of these), which includes but is not limited to Hugh Everett’s original

formulation (Everett, 1957), ‘many minds’ variants (Albert & Loewer, 1988), and ‘many worlds’

variants. Belonging to the last named class are DeWitt’s (1973 [1971]) original formulation, as well

as the, now mainstream, ‘neo-Everettian’ interpretation with which we will be mostly concerned in

this chapter. I follow Hewitt-Horsman (who attributes the name to Harvey Brown) in calling

‘neo-Everettian’ the amalgam of ideas of Zurek (2003 [1991]); Saunders (1995); Butterfield (2002);

Vaidman (2008), and especially Wallace (2002, 2003, 2010).
6I should not be interpreted here as giving an argument for the neo-Everettian interpretation

of quantum mechanics. My views on the correct interpretation of quantum mechanics are

irrelevant to this discussion. My claim is only that the decoherence basis is prima facie well-suited

for the role it plays in the neo-Everettian interpretation.
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quantum computation. In §2.3, I argue that, despite its intuitive appeal, the many

worlds view of quantum computation is not licensed by, and in fact is conceptually

inferior to, the neo-Everettian version of the many worlds interpretation of quantum

mechanics from which it receives its inspiration. In §2.4, I describe the cluster state

model of quantum computation and show how the cluster state model and the many

worlds explanation are incompatible. In §2.5 I argue, based on the conclusions of

§2.3 and §2.4, that we should reject the many worlds explanation of quantum

computation.

2.2 Preliminaries: A simple quantum algorithm

Deutsch’s problem (Deutsch, 1985) is the problem to determine whether a boolean

function taking one bit as input and producing one bit as output (i.e.,

f : {0, 1} → {0, 1},) is either constant or balanced. Such a function is constant if it

produces the same output value for each of its possible inputs. For the functions

f : {0, 1} → {0, 1}, the only possible constant functions are f(x) = 0 and f(x) = 1.

A balanced function, on the other hand, is one for which the output of one half of

the inputs is the opposite of the output of the other half. For the functions

f : {0, 1} → {0, 1}, the only possible balanced functions are the identity and bit-flip

functions. These are, respectively:

f(x) =

{

0 if x = 0

1 if x = 1,
f(x) =

{

1 if x = 0

0 if x = 1.

A generalisation of Deutsch’s problem, called the Deutsch-Jozsa problem,

enlarges the class of functions under consideration so as to include all of the

functions f : {0, 1}n → {0, 1}. Classically, the only way to determine whether an

arbitrary function from this class is balanced or constant is to test the function for

each of its possible input values. In a quantum computer, however, we can learn

whether such a function is balanced or constant in (neglecting overhead) one

computational step. The quantum solution to the Deutsch-Jozsa problem is given

by the Deutsch-Jozsa algorithm, which I present here in the improved version due to

Cleve et al. (1998).

The algorithm begins by initialising the registers of a quantum computer to
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|0n〉|1〉, after which a Hadamard gate is applied to all n+ 1 qubits, so that:

|0n〉|1〉 H−→
(

1

2n/2
(|0〉+ |1〉)n

)( |0〉 − |1〉√
2

)

=

(

1

2n/2

2n−1
∑

x

|x〉
)

( |0〉 − |1〉√
2

)

. (2.2)

The unitary transformation,

Uf (|x〉|y〉) ≡ |x〉|y ⊕ f(x)〉, (2.3)

representative of the function whose character (of being either constant or balanced)

we wish to determine, is then applied, which has the effect:7

Uf−→
(

1

2n/2

2n−1
∑

x

(−1)f(x)|x〉
)

( |0〉 − |1〉√
2

)

. (2.4)

Note how the action of the unitary transformation gives the appearance of

evaluating the function over multiple inputs at once.

If f is constant and = 0, this, along with a Hadamard transformation applied to

the first n qubits, will result in:

f = 0 :

(

1

2n/2

2n−1
∑

x

|x〉
)

|−〉 Hn⊗I−−−→ |0n〉|−〉,

where |−〉 ≡ |0〉−|1〉√
2

. Otherwise if f is constant and = 1, then this, along with a

Hadamard transformation applied to the first n qubits, will result in:

f = 1 : −
(

1

2n/2

2n−1
∑

x

|x〉
)

|−〉 Hn⊗I−−−→ −|0n〉|−〉.

In either case, a measurement in the computational basis on the first n qubits yields

the bit string z = 000 . . . 0 = 0n = 0 with certainty. If f is balanced, on the other

hand, then half of the terms in the superposition of values of x in (2.4) will have

positive phase, and half negative. After applying the final Hadamard transform, the

7Given the state |x〉(|0〉 − |1〉) (omitting normalisation factors for simplicity), note that when

f(x) = 0, applying Uf yields |x〉(|0⊕ 0〉 − |1⊕ 0〉) = |x〉(|0〉 − |1〉); and when f(x) = 1, applying Uf

yields |x〉(|0 ⊕ 1〉 − |1⊕ 1〉) = |x〉(|1〉 − |0〉) = −|x〉(|0〉 − |1〉).
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amplitude of |0n〉 will be zero.8 Thus a measurement of these qubits cannot produce

the bit string z = 000 . . . 0 = 0n = 0. In sum, if the function is constant, then z = 0

with certainty, and if the function is balanced, z 6= 0 with certainty. In either case,

the probability of success of the algorithm is 1, using only a single invocation. This

is exponentially faster than any known classical solution.

2.3 Neo-Everett and quantum computing

Algorithms like the Deutsch-Jozsa algorithm provide strong intuitive support for the

view that quantum speedup is due to a quantum computer’s ability to

simultaneously evaluate a function for different values of its input, and from here it

is not a large step to the many worlds explanation of quantum computation. It is

important to note, however, that one’s conception of a world, if one elects to take

this step, cannot be the one that is licensed by the neo-Everettian many worlds

interpretation of quantum mechanics. In superpositions such as the following,

1√
2
(|α〉 ⊗ |β〉+ |γ〉 ⊗ |δ〉),

the neo-Everettian interpretation will not, in general, license one to identify each

term of this superposition with a distinct world, for such a simplistic procedure for

world-identification will be vulnerable to the so-called preferred basis objection.

The problem is usually formulated in the context of macro-worlds and

macro-objects; however we can illustrate the basic idea by means of the following

simple example related to quantum computation. The classical value ↑ can be

represented, in the computational basis, by a qubit in the state |0〉. We can also

represent the same qubit from the point of view of the {|+〉, |−〉} basis, however, as9

8 To illustrate, consider the case where n = 2. After applying Uf , the computer will be in the

state: (|00〉 − |01〉+ |10〉 − |11〉)|−〉. Applying a Hadamard transform to the two input qubits will

yield:

(

(|00〉+ |01〉+ |10〉+ |11〉)− (|00〉 − |01〉+ |10〉 − |11〉)

+ (|00〉+ |01〉 − |10〉 − |11〉)− (|00〉 − |01〉 − |10〉+ |11〉)
)

|−〉
= (0|00〉+ . . .)|−〉.

9Since |+〉 = 1√
2
( 1
1 ) =

1√
2
(|0〉+ |1〉) and |−〉 = 1√

2

(

1
−1

)

= 1√
2
(|0〉 − |1〉),

1√
2
(|+〉+ |−〉) = 1

2 (|0〉+ |1〉+ |0〉 − |1〉) = 1
2 · 2|0〉 = |0〉.
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1√
2
(|+〉+ |−〉).

Thus depending on the basis one selects, it will be possible to regard the qubit

as either (if we select the computational basis) in the definite state |0〉, existing in

one world only, or (if we select the {|+〉, |−〉} basis), as in a superposition of the two

states, |+〉 and |−〉, and thus as existing in two distinct worlds. Yet there seems to

be no a priori reason why we should elect to choose one basis over the other.

Neo-Everettians (see, for instance, Wallace 2002, 2003) attempt to eliminate the

preferred basis problem by appealing to the dynamical process of decoherence (cf.

Zurek 2003 [1991]) as a way of distinguishing different worlds from one another in

the wave function. Recall that Schrödinger’s wave equation governs the evolution of

a closed system. In nature, however, there are no closed systems (aside from the

entire universe); all systems interact, to some extent, with their environment. When

this happens, the terms in the superposition of states representing the system

decohere and branch off from one another. From the point of view of an observer in

a particular world, this gives the appearance of wave-function collapse—of

definiteness emerging from indefiniteness—but unlike actual collapse (i.e., collapse

as per von Neumann’s projection postulate), decoherence is an approximate

phenomenon; thus some small amount of residual interference between worlds always

remains. But from the point of view of our experience of macroscopic objects, this

is, for all practical purposes, enough to give us the appearance of definiteness within

our own world and to distinguish, within the wave-function, macroscopic worlds

that evolve essentially independently and maintain their identities over time. Thus,

a ‘preferred’ basis with which one can define different worlds emerges naturally :

“the basic idea is that dynamical processes cause a preferred basis to emerge rather

than having to be specified a priori” (Wallace, 2003, p. 90).

On the neo-Everettian view, we identify patterns which are present in the

wave-function and which are more or less stable over time in this way with

macroscopic objects such as measurement pointers, cats, and experimenters. But

note that not every such pattern is granted ontological status; whether or not we do

so depends, not just on the process of decoherence, but also on the theoretical

usefulness of including that object in our ontology: “the existence of a pattern as a

real thing depends on the usefulness—in particular, the explanatory power and

predictive reliability—of theories which admit that pattern in their ontology”

(Wallace, 2003, p. 93). Thus, while decoherence is a necessary condition for
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granting ontological status to a pattern, it is not sufficient; we also require that

doing so is theoretically useful and fruitful.

Returning to the quantum computer, it should be clear by now that the

neo-Everettian interpretation, as described above, cannot provide support for the

view that quantum computers simultaneously evaluate functions for different values

of their input in different worlds, for as we have just seen, decoherence determines

the basis according to which we distinguish one world from another on the

neo-Everettian interpretation. The superpositions characteristic of quantum

algorithms, however, are always coherent superpositions. Indeed, the maximum

length of a quantum computation is directly related to the amount of time that the

system remains coherent (Nielsen & Chuang, 2000, p. 278). According to some, in

fact, it is coherence and not parallel processing which is the real source of quantum

speedup (Fortnow, 2003). Decoherence, in the context of quantum computation,

effectively amounts to noise.

It appears, then, that we require a more general criterion for branching than

decoherence if we are to accommodate quantum computation to a many worlds

picture. Thus the many worlds advocate, Hewitt-Horsman (2009), for instance,

rejects the idea that decoherence is the only possible criterion for distinguishing

worlds. Worlds, for Hewitt-Horsman, are (just as in the neo-Everettian approach),

defined as substructures within the wave-function that ‘for all practical purposes’

are distinguishable and stable over relevant time scales. With regards to macro

experience these relevant time scales are long, and the point of using decoherence as

an identifying criterion for distinct worlds, according to Hewitt-Horsman, is that it

is useful for identifying stable macro-patterns over such long time scales. But the

time scales relevant to quantum computation are generally much shorter: “they

may, indeed, be de facto instantaneous. However, if they are useful then we are

entitled to use them” (Hewitt-Horsman, 2009, p. 876).

In such a situation we may, according to Hewitt-Horsman, consider coherent

superpositions as representing distinct worlds for the purposes of characterising

quantum computation. “Defining worlds within a coherent state in this way is a

simple extension of the FAPP[10] principle ... If our practical purposes allow us to

deal with rapidly changing worlds-structures then we may” (Hewitt-Horsman, 2009,

p. 876). As for the preferred basis problem, it will not arise. Just as with the

neo-Everettian interpretation, in the quantum computer we have a criterion for

selecting a basis with which to decompose the wave function; in this case the basis

10FAPP stands for ‘for all practical purposes’.
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is that in which the different evaluations of the function are made manifest, i.e., the

computational basis.

This fits in well with intuitions that are often expressed about the

nature of quantum computations ... There are frequently statements to

the effect that it looks like there are multiple copies of classical

computations happening within the quantum state. If one classical state

from a decomposition of the (quantum) input state is chosen as an input,

then the computation runs in a certain way. If the quantum input state

is used then it looks as if all the classical computations are somehow

present in the quantum one. ... the recognition of multiple worlds in a

coherent states [sic.] seems both to be a natural notion for a quantum

information theorist, and also a reasonable notion in any situation where

‘relevant’ time-scales are short (Hewitt-Horsman, 2009, p. 876).

Certainly it does look as if the computation is composed of many processes

executing in parallel, and plausibly it can be of some heuristic value to think of these

processes as taking place in many worlds. With this I do not disagree. However,

pace Hewitt-Horsman, I do not believe this is enough to justify treating these worlds

as ontologically real, for unlike the criterion of decoherence with respect to macro

experience, Hewitt-Horsman’s criterion for distinguishing worlds in the context of

quantum computation seems quite ad hoc. Declaring that the preferred basis is the

one in which the different function evaluations are made manifest is like declaring

that the preferred basis with respect to macro experience is the one in which we can

distinguish classical states from one another. But it is, in fact, a rejection of such

reasoning that leads to decoherence as a criterion for world-identification in the first

place. The decoherence basis, on the neo-Everettian view, is not simply picked from

among many possible bases as the one which serves to capture our experience of

definiteness at the macro-level. To do so would be to commit the same sin (by

neo-Everettian lights) that is committed by other interpretations of quantum

mechanics such as Bohmian mechanics or GRW theory. This is the sin of adding

extra elements to the formalism of quantum theory in order to preserve classicality

at the macroscopic level. For the neo-Everettian, in contrast, decoherence is

appealed to as a known physical process that in fact gives rise to—and even then

only approximately—the appearance of distinct classical worlds (cf. Wallace, 2010,

pp. 55, 63-65). The point of using decoherence as a criterion for distinguishing

worlds is not to save the appearance of classicality, but rather to explain why we
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experience the world classically, in this case by appealing to a physical process that

gives rise to our experience. The choice of the computational basis as the basis

within which different worlds are to be distinguished, however, fulfils no such

explanatory role. It does not serve to explain the appearance of parallel classical

computation. It only declares, based on a particular privileged description of the

computation, that parallel computation is occurring in many worlds.11

An advocate of the many worlds explanation might make the following rejoinder:

the computational process, considered as a whole, is just as empirically

well-established as the decoherence process is (we know that a computation has

taken place since we have the result). And just as the decoherence process gives rise

to parallel autonomously evolving decoherent worlds which are (approximately)

diagonal in the decoherence basis, the computational process gives rise to parallel

autonomous computational worlds which are diagonal (at least at the beginning of

the computation) in the computational basis. Thus the computational process gives

rise to and therefore explains the computational worlds that make up the

computation just as well as the decoherence process explains the decoherent worlds

that make up classical experience.

This response is problematic, however, for it is the computation itself, in

particular what distinguishes it from classical computation, that we are seeking an

explanation for. The many worlds explanation of quantum computation promises to

explain quantum computation in terms of many worlds, but on this response it

appears that we need to appeal to the computation in order to explain these many

worlds in the first place. This seems circular, and even if the case can be made that

it is not, the response fails to consider that, as the quote from Mermin with which I

began this chapter makes clear, appearances can be misleading: we must be very

cautious when describing the quantum state characterising a computation. In

particular, we must be cautious when inferring from the form of the state that

describes the computation to the content of that state. For instance, as Steane

11I should mention that Wallace, who I am taking as representative of the neo-Everettian

interpretation of quantum mechanics, does seem to cautiously endorse a many worlds explanation

for some quantum algorithms: “There is no particular reason to assume that all or even most

interesting quantum algorithms operate by any sort of ‘quantum parallelism’ ... But Shor’s

algorithm, at least, does seem to operate in this way” (Wallace, 2010, p. 70, n. 17). Wallace has

also made similar remarks in informal correspondence. But whatever Wallace’s views on quantum

computation are, they are obviously separable from his views on world decomposition for

macro-phenomena.
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(2003, p. 473) has pointed out, according to the Gottesman-Knill theorem,12 an

important class of quantum gates—the so-called Clifford-group gates, which include

the Hadamard, Pauli, and CNOT gates—can be simulated in polynomial time by a

classical probabilistic computer (Nielsen & Chuang, 2000, p. 464). This is

interesting, since several quantum algorithms utilise gates exclusively from this

class. Thus the appearance of quantum parallelism, in these cases at least, may be

deceiving.

Even if true, the quantum parallelism thesis need not entail the existence of

autonomous local parallel computational processes. Duwell (2007, p. 1008), for

instance, illustrates this by showing how the phase relations between the terms in a

system’s wave function are crucially important for an evaluation of its

computational efficiency. Phase relations between terms in a system’s wave

function, however, are global properties of the system. Thus we cannot view the

computation as consisting exclusively of local parallel computations (within multiple

worlds or not). But if we cannot do so, then there is no sense in which quantum

parallelism uniquely supports the many worlds explanation over other explanations.

Everettian varieties such as the neo-Everettian interpretation of quantum

mechanics and the many worlds explanation of quantum computing take the

branching process seriously : they claim ontological significance for the ‘worlds’ that

arise from this process. They are thus required to confront the preferred basis

problem, for they must determine a criterion for branching. While the

neo-Everettian interpretation of quantum mechanics does this admirably well, the

many worlds explanation of quantum computing, I have argued, does not.

Before concluding this section, I should note that not all Everettian varieties do

take branching seriously (in fact, this may have been true of Everett’s own view; see

Barrett 2011 for a discussion). Such views are not confronted with the preferred

basis problem and are thus immune to the objections above. However, since

branching is not a real physical process on such views, it is analytic that they can

provide no physical explanation for the quantum computational process in terms of

branching computational worlds. As an illustration, an Everettian might insist13

that the way in which one chooses to express the state of a system has no particular

significance. On such an interpretation, one should not view the universe as having

any one particular branching structure. Rather, the essential point is that in any

12We will discuss the Gottesman-Knill theorem in further detail in Chapter 4.
13I am indebted to an anonymous reviewer at the journal Studies in History and Philosophy of

Modern Physics for pointing this out.
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process such as quantum computation, the fact is that the Schrödinger evolution of

all quantum superpositions has been realised. On such a view, however one chooses

to decompose the state of a system, the resulting superposition must be viewed as

real. Thus the superposition of the quantum computational process, as expressed in

the computational basis, is realised, just as is the superposition as expressed in some

other basis.

On this interpretation, however, it cannot be the case that multiple local parallel

computational processes in many worlds are the physical explanation for quantum

speedup; for any decomposition of the state of the computer in any given basis can

provide the ground for an equally legitimate ‘explanation’ of the computer’s

operation. Rather, we should say that any such decomposition constitutes, for one

who finds Everettian language appealing, a legitimate description of the process. I

do not wish to be misunderstood as attempting to deny to those who find

Everettian language appealing the possibility of, when appropriate, describing the

operation of the quantum computer in this way. But again, this does not constitute

a physical explanation.

In any case, the questionable nature of the inference from the heuristic value of

the notion of computational worlds to the ascription of ontological reality to these

worlds is one good reason to, at the very least, be suspicious of the many worlds

explanation of quantum computing. But let us, for the sake of argument, grant the

inference. Let us focus, instead, on the antecedent clause of the conditional; i.e., on

whether it really is true that the many worlds description of quantum computation

is the most useful one available. In the next section I will examine the recently

developed cluster state model of quantum computation. I will argue that a

description of the cluster state model in terms of many worlds is, not only

unnatural, but that such a description is incompatible with the cluster state model.

I will then argue that this undermines the usefulness of the many worlds description

of quantum computation, not just in the cluster state model, but in general.

2.4 Cluster state quantum computing

On the cluster state model (Raussendorf & Briegel, 2002; Raussendorf et al., 2003;

Nielsen, 2006) of quantum computation, computation proceeds by way of a series of

single qubit measurements on a highly entangled multi-qubit state known as the

cluster state.14 The cluster-state quantum computer (QCC) is a universal quantum

14For this reason the model has also been given the name ‘measurement based computation’.
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computer; it can efficiently simulate any algorithm developed within the network

model. In fact it is computationally equivalent to the network model in the sense

that each model may be used to simulate the operation of the other. Each qubit in

the cluster has a reduced density operator of 1
2
I, and thus individual qubit

measurement outcomes are completely random. It is nevertheless possible to process

information on the cluster state quantum computer due to the fact that strict

correlations exist between measurement outcomes. These correlations are

progressively destroyed as the computation runs its course.15

It is helpful to illustrate the operation of the QCC by exhibiting the way one

may use it to simulate a network-based quantum algorithm. In the network model,

single-qubit gates can, in general, be thought of as rotations of the Bloch sphere (for

example, the Pauli X , Y , and Z gates can be thought of as rotations of the Bloch

sphere through π radians about the x, y, and z axes, respectively). It is possible to

simulate an arbitrary rotation of the Bloch sphere with the QCC by using a chain of

5 qubits as follows (cf. Raussendorf & Briegel 2002, pp. 446-447, Raussendorf et al.

2003, p. 5). First, we consider the Euler representation of an arbitrary rotation.16

This is

URot[ξ, η, ζ ] = Ux[ζ ]Uz[η]Ux[ξ], (2.5)

where the rotations about the x and z axes are given by

Ux[α] = exp
(

−iασx
2

)

, (2.6)

Uz[α] = exp
(

−iασz
2

)

. (2.7)

The first qubit in the chain is called the input qubit; it will contain the state

that we wish to rotate. It is thus prepared in the state |ψin〉, while the other four

qubits in the chain are prepared in the |+〉 state. After applying an

15This gives rise to a third name for this model: ‘one-way computation’.
16The Euler representation is a way to represent the general rotation of a body in three

dimensions. The procedure to achieve such a general rotation consists of three steps: a rotation of

the body about one of its coordinate axes, followed by a rotation about a coordinate axis different

from the first, and then a rotation about a coordinate axis different from the second. We represent

rotations by Rotation operators, and matrix multiplication is used to represent combinations of

rotations. For example, a rotation of α about ẑ followed by a rotation of β about ŷ followed by a

rotation of γ about x̂ is represented by Rx(γ)Ry(β)Rz(α). The analogue of the rotation operator

in a complex state space is the unitary operator.
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entanglement-generating unitary transformation to the qubits,17 the first four qubits

are measured one by one in the following way. We begin by measuring qubit 1 in

basis B1(0), where 0 is the measurement angle, φj, and the basis is calculated as

Bj(φj) =

{ |0〉j + eiφj |1〉j√
2

,
|0〉j − eiφj |1〉j√

2

}

. (2.8)

The result of this measurement is denoted s1, where sj ∈ {0, 1} represents the result

of measuring the jth qubit.

We now use s1 to calculate the measurement basis for qubit 2, which is

B2(−ξ(−1)s1). Qubit 2 is then measured in this basis and the result recorded in s2,

which is then used to determine the measurement basis for qubit 3: B3(−η(−1)s2).

We then use both s1 and s3 to determine the basis to use for the measurement of

qubit 4: B4(−ζ(−1)s1+s3). At the end of this process, the output of the ‘gate’ is

contained in qubit 5 (i.e., qubit 5 is in a state that is equivalent to what would have

resulted if we had applied an actual rotation to |ψin〉), which we then read off in the

computational basis.18

Similarly, it is possible to implement more specific 1-qubit rotations such as the

Hadamard, π/2-phase, X ,Y , and Z gates. 2-qubit gates, such as the CNOT gate,

can be implemented using similar techniques (Raussendorf et al., 2003, pp. 4-5) and

we can combine all of these gates together in order to simulate an arbitrary network.

To illustrate the general operation of the cluster state computer, imagine, once

again, that we are simulating a network-based quantum algorithm. In each

individual gate simulation there will be, on the one hand, those qubits whose

measurement depends on the outcomes of one or more previous measurements for

the determination of their basis, and on the other hand, those that do not. We

divide these qubits into disjoint subsets, Qt, of the cluster C, as follows. All qubits,
regardless of which gate they belong to, which do not require a previous

measurement for the determination of their basis are added to the class Q0. We

then add to Q1 all qubits which depend solely on the results of measuring qubits in

Q0 for the determination of their basis. Q2 comprises, in turn, all qubits which

depend on the results of measuring qubits in Q0 ∪Q1 for the determination of their

17The procedure for generating entanglement is described in (Raussendorf et al., 2003, pp. 3-4).
18I have simplified this procedure slightly. The gate simulation actually realises, not exactly

URot, but U
′
Rot[ξ, η, ζ] = UΣ,RotURot[ξ, η, ζ], where UΣ,Rot = σs2+s4

x σs1+s3
z is called the random

byproduct operator and is corrected for at the end of the computation (Raussendorf et al., 2003, p.

5).
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basis. And so on until we reach Qtmax
.

We then begin by measuring the qubits in the set Q0. We use the outcomes of

these measurements to determine the measurement bases for the qubits to be

measured in Q1. Once these are measured, the outcomes of Q0 and Q1 together are

used to determine the measurement bases for Q2. The process continues in this

fashion until all the required qubits have been measured (Raussendorf et al., 2003,

p. 19). Note that the temporal ordering of measurements on the cluster state will,

in general, not depend on what role—input, output, etc.—qubits have with respect

to the network model. In fact, those qubits that play the role of gates’ ‘output

registers’ will typically be among the first to be measured (Raussendorf et al., 2003,

p. 19). In general, the temporal ordering of measurements on a QCC that has been

designed to simulate a network does not mirror the temporal ordering the gates

would have had if they had been implemented as a network (Raussendorf & Briegel,

2002, p. 444).

At this point we must ask ourselves whether it is possible to describe the cluster

state model using a many worlds ontology. At first glance there does not seem to be

anything barring such a description in principle. We might view each of the qubits

as existing simultaneously in multiple worlds, for example, while the computation is

being performed. But even if this were possible, it is difficult to see what would be

gained by such a description, for this is neither a natural view of what is happening,

nor a particularly useful one: in the network model it seems natural to conceive of a

unitary gate as effecting a parallel computation by means of a transformation such

as that in equation (2.1). But such a ‘step’ is missing in the cluster state model.

There is nothing corresponding to such a unitary transformation. At best we have a

simulation of such a gate; however, it is a simulation that bears no resemblance, in

terms of its physical realisation, to the corresponding network circuit. In addition,

the temporal ordering of computation in the cluster state has little, if anything, to

do with the temporal ordering present in the simulated network. Thus there is

nothing corresponding to simultaneous function evaluation in the cluster state, for

on the cluster state model gates are only conceptual entities that one may utilise for

algorithm design. When it comes to implementation, the logical division of the

cluster into distinct gates is completely irrelevant. Indeed, in order to characterise

the cluster state model it is not necessary to begin with the logical layout of the

network model at all, for the cluster state model is, arguably, more effectively

characterised by a graph than by a network (Raussendorf et al., 2003, p. 20).

Far from being a natural and intuitive picture of cluster state computation, it
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seems, rather, that one must work against one’s intuition to view the cluster state

model as a model of parallel computation in many worlds, and it is hard to see how

such a description can be useful. Considerations such as these prompt Steane to

write: “[t]he evolution of the cluster state computer is not readily or appropriately

described as a set of exponentially many computations going on at once. It is

readily described as a sequence of measurements whose outcomes exhibit

correlations generated by entanglement” (2003, p. 474). I should note that many

worlds advocates such as Hewitt-Horsman, also, reluctantly reject the view that

cluster state computation need involve an appeal to many worlds (Hewitt-Horsman,

2009, pp. 896-897); though, as we have seen, she still defends the legitimacy and

usefulness of describing network based computation in terms of many worlds and of

treating these worlds as ontologically real (Hewitt-Horsman, 2009, pp. 890-896).

But the main problem, for one who wishes to defend a many worlds description

of the operation of the cluster state computer, is not that such a description is

neither natural nor useful. The problem is deeper than this, for it appears that it is

for all practical purposes impossible to specify a preferred basis in which to

distinguish the worlds in which parallel computations take place in the context of

the cluster state computer. Recall that, in general, measurements in the cluster

state model are adaptive: the basis for each measurement will change throughout

the computation and will differ from one qubit to the next. During each time step

of the computation, the (random) results of the measurements performed in that

step will determine the measurement bases used to measure the qubits in

subsequent steps. But this random determination of measurement bases means that

there is no principled way to select a preferred basis a priori (and even if we did, few

qubits would actually be measured in that basis), and we certainly cannot assert

that there is any sense in which a preferred basis ‘emerges’ from this process. Thus

there is no way in which to characterise the cluster state computer as performing its

computations in many worlds, for there is no way, in the context of the cluster state

computer, to even define these worlds for the purposes of describing the

computation as a whole.

As a possible rejoinder, one might assert that the cluster state model merely

obscures the fact that the computation takes place in many worlds, and that this

would be revealed upon closer analysis by, for instance, considering how one might

go about simulating a cluster-state computation with circuits. In fact it is possible

to simulate a cluster state using classically controlled gates. Classically controlled

gates are gates whose operation is dependent on classical bit values (these are
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typically the results of measurements). To avoid the problem of the continually

changing basis, one might take the additional step of deferring all measurements to

the end of the process. According to the principle of deferred measurement (Nielsen

& Chuang, 2000, p. 186), this is always possible.

Such a simulation would require many more qubits and at least one more

two-qubit operation for each single qubit operation in the cluster, however. In

principle, there will be no bound to either the additional memory or to the number

of additional two-qubit gates required to realise the simulation (de Beaudrap, 2009,

p. 2). Practical methods, therefore, for simulating the cluster state with circuits

allow measurement gates to be a part of the computational process (Childs et al.,

2005; de Beaudrap, 2009). They decompose the cluster state into a series of

classically controlled change of basis gates followed by measurement gates in the

standard basis. Thus this will not solve the problem for the many worlds theorist.

But perhaps some day an ingenious theorist will find a way to simulate cluster

state computation in some other model without the use of adaptive measurements

or classically controlled change of basis gates. What should we say then? Even in

this case I think it would be misleading to speak of the cluster state model as

obscuring the fact that many worlds are responsible for the speedup it evinces.

Recall that, for those who adhere to the many worlds explanation of quantum

computation, part of the motivation for describing computation as literally

happening in many worlds is that it is useful for algorithm analysis and design to

believe that these worlds are real. This motivation is absent in the cluster state

model irrespective of whether it can be simulated in some other model. Moreover,

irrespective of whether it can be simulated in some other model, the cluster state

model will, in virtue of its unique characteristics, surely lead to new ways of

thinking about quantum computation that would not have occurred to a theorist

working only with the network model. To dogmatically hold on to the view that, in

actuality, many worlds are, at root, physically responsible for the speedup evinced

in the cluster state model will at best be useless, for, as we have seen, it will not

help our theorist to design algorithms for the cluster state. At worst it will be

positively detrimental if dogmatically holding on to this view prevents our theorist

from discovering the possibilities that are inherent in the cluster state model.
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2.5 The legitimacy of the many worlds

explanation for the network model

We saw, in §2.3, that the many worlds explanation of quantum computing cannot

avail itself of many of the arguments in support of the many worlds interpretation of

quantum mechanics which appeal to decoherence as a criterion for distinguishing

worlds in order to circumvent the preferred basis objection. Further, we saw that

while the decoherence basis is able to fulfil the role assigned to it, in the many

worlds interpretation of quantum mechanics, of determining the preferred basis for

world decomposition with respect to macro experience, the corresponding criterion

for world decomposition appealed to by those who defend the many worlds

explanation of quantum computing cannot fulfil this role except in an ad hoc way.

Thus we have one reason to reject many worlds as an explanation of the network

model of quantum computation. Let us put this consideration to one side.

We have just seen, in §2.4, that the cluster state model of quantum computation

is incompatible with a many worlds explanation of it. In spite of this, one might

still wish to maintain the view that network-based computation, at least, is

computation in many worlds. There is nothing wrong in principle with such a

stance. What makes this view problematic, however, is the fact that the

cluster-state model is computationally equivalent to the network model. One must

therefore be committed to the view that an algorithm, when run on quantum

circuits, performs its computation in many worlds; while a simulation of the same

algorithm, run on a cluster-state computer, does not. Moreover, this is in spite of

the fact that there may be no difference in the way in which individual qubits are

physically realised in each computer.

As unfortunate as such a situation would be, it would be forced on us if there

were no other potential unifying explanations of the source of quantum speedup

available. Fortunately, however, there do exist potential physical explanations for

quantum speedup in the network model which, unlike the many worlds explanation,

are compatible with the cluster state model.

One example of such an explanation is due to Lance Fortnow. Fortnow (2003)

develops an abstract mathematical framework for representing the computational

complexity classes associated with classical and quantum computing.19 In Fortnow’s

19These are BPP (bounded-error probabilistic polynomial time) and BQP (bounded error

quantum polynomial time). For more on computational complexity classes, see Appendix A. For a

more detailed overview of Fortnow’s framework, see Appendix E.
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framework, both classes of computation are represented by transition matrices which

determine the possible transitions between the configurations of a nondeterministic

Turing machine. This framework shows, according to Fortnow, that the

fundamental difference between quantum and classical computation is interference:

in the quantum case, matrix entries can be negative, signifying a quantum

computer’s ability to realise good computational paths with higher probability by

having the bad computational paths cancel each other out (Fortnow, 2003, p. 606).

Another example of a unifying explanation is the physical explanation for

quantum speedup that we will develop in the following chapters.

Unlike the many worlds explanation, these explanations of the source of quantum

speedup do not rely on the particular characteristics of the network model and seem

straightforwardly compatible with cluster state computation. But the fact that the

many worlds explanation of quantum speedup is not compatible with the cluster

state model, while these other explanations of quantum speedup are, is a reason to

question its usefulness as a description of network-based quantum computation, and

thus one more reason to reject it as an explanation of quantum speedup tout court.

2.6 Conclusion

I hope to have convinced the reader that, whatever the merits of the neo-Everettian

interpretation of quantum mechanics are, the many worlds explanation of quantum

computing is inadequate as an explanation of either the network or the cluster state

model of quantum computation. We saw above how it depends on a suspect

extension of the the neo-Everettian approach to the interpretation of quantum

mechanics, and we saw how, unlike other explanations of quantum computing, it is

unable to describe the cluster state model of quantum computation. I hope that the

reader agrees that these are convincing reasons to reject the many worlds

explanation of quantum computing.

I do not want to argue that the many worlds explanation of quantum

computation, particularly in regards to the network model, has no heuristic value.

It undoubtedly does, and thinking in this manner has assuredly led to the

development of some important quantum algorithms. Nevertheless we should take

talk of many computational worlds with a grain of salt. Indeed, taking literally the

many worlds view of quantum computation may be positively detrimental if it

prevents us from constructing models of quantum computation, such as the cluster

state model, in the future.
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2.7 Next steps

The many worlds explanation of quantum computation is, arguably, the best known

of the candidate physical explanations for quantum speedup. It is also, perhaps, the

most influential; it has been and continues to be discussed in the popular,

philosophical, and scientific literature on quantum computation. Given this,

thoroughly considering its merits as an explanation for quantum speedup was both

important and appropriate. Now that we have completed this inquiry, however, we

will take a different approach. In lieu of undertaking a case by case critical

examination of the major candidate explanations of quantum computation on offer,

from here on in we will proceed in a more constructive manner.

In almost all of the candidate explanations for quantum speedup (e.g., Ekert &

Jozsa 1998; Steane 2003; Duwell 2004; Bub 2006, 2010), the fact that quantum

mechanical systems can sometimes exhibit entanglement plays an important role.20

On Steane’s view, for instance, quantum entanglement allows one to manipulate the

correlations between the values of a function without manipulating those values

themselves. For proponents of the many worlds explanation, on the other hand,

though they consider computational worlds to be the main component in the

explanation of quantum speedup, they nevertheless view entanglement as

indispensable to its analysis (Hewitt-Horsman, 2009, 889). This circumstance is

intriguing, and leads one to wonder whether one must appeal to entanglement in

order to explain quantum speedup; i.e., whether entanglement is a necessary

component of any explanation for quantum speedup. This will be the topic of the

next chapter.

Continuing along in this more positive manner, perhaps we will be fortunate

enough to stumble upon some one, or some set, of necessary and sufficient

conditions for the explanation that we seek—and in this way assemble together an

explanation for quantum speedup, so to speak, ‘from the ground up’.

20One important exception to this is Fortnow’s view (cf. Appendix E), which points to

interference, and not entanglement, as the explanation for quantum speedup. As I will argue in

Chapter 5, however, interference and entanglement can be seen as, so to speak, two sides of the

same coin.
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Chapter 3

Entanglement as a Necessary

Component in a Physical

Explanation for Quantum

Computational Speedup

3.1 Introduction

The significance of the phenomenon of quantum entanglement—wherein the most

precise characterisation of a quantum system composed of previously interacting

subsystems does not necessarily include a precise characterisation of those

subsystems—has been at the forefront of the debate over the conceptual foundations

of quantum theory, almost since that theory’s inception. It is the distinguishing

feature of quantum theory, for some (Schrödinger, 1935).1 For others, it is evidence

for the incompleteness of that theory (Einstein, Podolsky, & Rosen, 1935).2 For yet

others, the possibility of entangled quantum systems implies that physical reality is

essentially non-local (Stapp, 1997).3 For almost all, it has been, and continues to

be, an enigma requiring a solution.

Logically, entanglement may play the role of either a necessary or a sufficient

1For some more recent speculation on the the distinguishing feature(s) of quantum mechanics,

see, for instance, Clifton et al. (2003); Myrvold (2010).
2For further discussion, and for Einstein’s later refinements of the Einstein-Podolsky-Rosen

(EPR) paper’s main argument, see Howard (1985).
3For responses to Stapp’s view and for further discussion, see: Unruh (1999); Mermin (1998);

Stapp (1999).
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condition (or both) in an overall explanation of quantum speedup. The question of

whether entanglement may be said to be a sufficient condition will be addressed in

subsequent chapters. As for the assertion that entanglement is a necessary

component in the explanation of speedup, this seems, prima facie, to be supported4

by a result due to Jozsa & Linden (2003), who prove that for quantum algorithms

which utilise pure states, “the presence of multi-partite entanglement, with a

number of parties that increases unboundedly with input size, is necessary if the

quantum algorithm is to offer an exponential speed-up over classical computation”

(2003, p. 2014). When we consider quantum algorithms which utilise mixed states,

however, then there appear to be counterexamples to the assertion that one must

appeal to quantum entanglement in order to explain quantum speedup. In

particular, Biham et al. (2004) have shown that it is possible to achieve a modest

(sub-exponential) speedup using unentangled mixed states. Further, Datta et al.

(2005, 2008) have shown that it is possible to achieve an exponential speedup using

mixed states that contain only a vanishingly small amount of entanglement. In the

latter case, further investigation has suggested to some that quantum correlations

other than entanglement may be playing a more important role. One quantity in

particular, quantum discord, appears to be intimately connected to the speedup that

is present in the algorithm in question. In light of these results, it is tempting to

conclude that it is not necessary to appeal to entanglement at all in order to explain

quantum computational speedup and that the investigative focus should shift to the

physical characteristics of quantum discord or some other such quantum correlation

measure instead.

In this chapter I will argue that this conclusion is premature and misguided, for

as I will show below, there is an important sense in which entanglement can indeed

be said to be necessary for the explanation of the quantum speedup obtainable from

both of these mixed-state quantum algorithms.

The chapter will proceed as follows. After introducing the concept of

entanglement and how it is quantified in §3.2, I introduce the necessity of

entanglement for explanation thesis in §3.3. In §3.4, I show how what looks like a

counter-example to the necessity of entanglement for explanation thesis for pure

states—the fact that certain important quantum algorithms can be expressed so

that their states are never entangled—is instead evidence for this thesis. Then, in

4What I take to be supported by Jozsa & Linden’s result is the claim that entanglement is

required in order to explain quantum speedup. As we will discuss further in §3.3, this is distinct
from the claim that one requires an entangled quantum state in order to achieve quantum speedup.
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§3.5, I examine the more serious challenges to the necessity of entanglement for

explanation thesis posed by the cases of sub-exponential speedup with unentangled

mixed states (§3.5.1) and exponential speedup with mixed states containing only a

vanishingly small quantity of entanglement (§3.5.2).
Starting with the first type of counter-example, I begin by arguing that pure

quantum states should be taken to provide a more fundamental representation of

quantum systems than mixed states. I then show that when one considers the

initially mixed state of the quantum computer as representing the space of its

possible pure state preparations, the speedup obtainable from the computer can be

seen as stemming from the fact that the quantum computer evolves some of these

possible pure state preparations to entangled states—that the quantum speedup of

the computer can be seen as arising from the fact that it implements an entangling

transformation.

As for the second type of counter-example, where exponential speedup is

achieved with only a vanishingly small amount of entanglement, and where it is held

by some that another type of non-classical correlation, quantum discord, is

responsible for the speedup of the quantum computer: I argue that, first, it is

misleading to characterise discord as indicative of non-classical correlations. I then

appeal to recent work done by Fanchini et al. (2011), Brodutch & Terno (2011), and

Cavalcanti et al. (2011) who show, respectively, that when one considers the

‘purified’ state representation of the quantum computer, there is a conservation

relation between discord and entanglement, and indeed that there is just as much

entanglement in such a representation as there is discord in the mixed state

representation; that entanglement must be shared between two parties in order to

bilocally implement any bipartite quantum gate; and that entanglement is directly

involved in the operational definition of quantum discord.

Given Jozsa & Linden’s proof of the necessary presence of an entangled state for

exponential speedup using pure states, and given the fundamentality of pure states

as representations of quantum systems, the burden of proof is upon those who would

deny the necessity of entanglement for explanation thesis to show either by means of

a counter-example or by some other more principled method that it is false. Neither

of the counter-examples discussed in this chapter succeeds in doing so. We should

conclude, therefore, that the necessity of entanglement for explanation thesis is true.
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3.2 Preliminaries

3.2.1 Quantum entanglement

Pure states

Consider the following representation of the joint state of two qubits:

|ψ〉 = |0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉.

This expression for the overall state of the system represents the fact that the two

qubits are in an equally weighted superposition of the four joint states (a)-(d)

below:

q1 q2

(a) |0〉 |0〉
(b) |0〉 |1〉
(c) |1〉 |0〉
(d) |1〉 |1〉.

This particular state is a separable state, for it can, alternatively, be expressed as a

product of the pure states of its component systems, as follows:

|ψ〉 = (|0〉+ |1〉)⊗ (|0〉+ |1〉).

Not all quantum mechanical states can be expressed as product states of their

component systems, and thus not all quantum mechanical states are separable. Here

are four such ‘entangled’ states:5

|Φ+〉 = |00〉+ |11〉√
2

|Φ−〉 = |00〉 − |11〉√
2

|Ψ+〉 = |01〉+ |10〉√
2

|Ψ−〉 = |01〉 − |10〉√
2

. (3.1)

5Note that below I have used the shorthand tensor product notation. See §1.3.
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The skeptical reader is encouraged to convince himself that it is impossible to

re-express any of these states as a product state of two qubits. They are called the

Bell states, and I will refer to a pair of qubits jointly in a Bell state as a Bell pair.6

Maximally entangled states,7 such as these, completely specify the correlations

between outcomes of experiments on their component qubits without specifying

anything regarding the outcome of a single experiment on one of the qubits. For

instance, in the singlet state (i.e., |Ψ−〉), outcomes of experiments on the first and

second qubits are perfectly anti-correlated with one another. If one performs, say, a

ẑ experiment on one qubit of such a system, then if the result is |0〉, a ẑ experiment

on the other qubit will, with certainty, yield an outcome of |1〉, and vice versa. In

general, the expectation value for joint measurements on the two qubits is given by

−m̂ · n̂ = − cos θ, where m̂, n̂ are unit vectors representing the orientations of the

two experimental devices, and θ is the difference in these orientations. Any single ẑ

experiment on just one of the two qubits, however, will yield |0〉 or |1〉 with equal

probability.

The phenomenon of entanglement has deep implications for our understanding

of the physical world. Consider an alternative theory of quantum mechanics in

which λ is an assignment to a set of hidden variables determining the outcomes of

experiments on the two subsystems of a Bell pair. Suppose λ satisfies the condition

that it assigns probabilities to experimental outcomes on the first subsystem that

are independent of experimental outcomes on the second subsystem (and vice

versa); i.e.,

paλ(xa|a, b) = paλ(xa|a, b, xb). (3.2)

This condition has variously been called completeness (Jarrett, 1984), outcome

independence (Shimony, 1993), and separability (Howard, 1985). Bell’s inequalities

imply that any theory consistent with the predictions of quantum mechanics which

satisfies (3.2) must assign different probabilities to outcomes of experiments on the

first subsystem depending on the choice of test that is performed on the second

subsystem; i.e., it must violate the condition that

paλ(xa|a, b) = paλ(xa|a, b′). (3.3)

6These are also sometimes referred to as ‘EPR pairs’. EPR stands for Einstein, Podolsky, and

Rosen. In their seminal 1935 paper, EPR famously used states analogous to the Bell states to

argue that quantum mechanics is incomplete.
7Note that not all entangled states are maximally entangled states. We will discuss this in

more detail in the next section.
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Jarrett and Howard call this second condition locality, while Shimony calls it

parameter independence. Together, outcome and parameter independence yield

factorisability :

pabλ (xa, xb|a, b) = paλ(xa|a) · pbλ(xb|b). (3.4)

It turns out that Bell’s inequalities imply that any theory that is consistent with

the predictions of quantum mechanics must violate (3.4) and thus violate either

(3.2) or (3.3). In particular, a fully deterministic hidden variables theory, which the

reader should convince herself must necessarily satisfy (3.2), must therefore

necessarily violate (3.3). On the other hand, standard quantum mechanics obviously

violates (3.2), but satisfies (3.3). It is worthwhile to note that a violation of (3.3)

necessarily brings one into conflict with special relativity, but that it is at least not

obvious that a mere violation of (3.2) does so; i.e., that ‘peaceful coexistence’

between the two theories is impossible.8

We will consider the physical significance of quantum entanglement in more

detail in subsequent chapters, but for the time being we will put such interpretive

questions to one side. For the purposes of this chapter my intention will be to

characterise entanglement as neutrally and uncontroversially as possible.

Mixed states

The concepts of separability and of entanglement are also applicable to so-called

‘mixed states’. To illustrate the concept of a mixed state, imagine that one draws a

ball from an urn into which balls of different types have been placed, and that the

probability of drawing a ball of type i is pi. Corresponding to the outcome i, we

then prepare a given system S in the pure state |ψi〉, representable by the density

operator ρSi = |ψi〉〈ψi|. After preparing ρSi , we then discard our record of the result

of the draw. The resulting state of the overall system will be the mixed state:

ρ =
∑

i

piρ
S
i . (3.5)

A mixed state is separable if it can be expressed as a mixture of pure product

8For further discussion of peaceful coexistence, see Shimony (1993). For a more specific defence

of the possibility of peaceful coexistence between special relativity and theories which characterise

quantum mechanical wave function collapse as a real physical process, see Myrvold (2002).
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states, and entangled otherwise. In general, determining whether a mixed state of

the form (3.5) is an entangled state is difficult, because in general the decomposition

of mixtures is non-unique. For instance, the reader can verify that a mixed state

represented by the density operator ρ, prepared as a mixture of pure states in the

following way:

ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|,

can also be equivalently prepared as:

ρ =
1

2
|ψ〉〈ψ|+ 1

2
|φ〉〈φ|,

where

|ψ〉 ≡
√

3

4
|0〉+

√

1

4
|1〉, |φ〉 ≡

√

3

4
|0〉 −

√

1

4
|1〉.

This is so because both state preparations yield an identical density matrix

representation (in the computational basis); i.e.,:

(

3/4 0

0 1/4

)

.

As we will see in more detail later, a system that is prepared as a mixture of

entangled states will sometimes yield the same density operator representation as a

system prepared as a mixture of pure product states.

3.2.2 Quantifying entanglement

The four Bell states that we encountered in section 3.2.1 are examples of maximally

entangled states. Not all entangled states are maximally entangled states, however.

For instance, as will be clear later, the state

|φ〉 =
√

1

3
|01〉+

√

2

3
|10〉, (3.6)

though entangled, is not maximally entangled.

Entanglement is a potentially useful resource for quantum information

processing. Masanes (2006) has shown, for instance, that for any non-separable

state ρ, some other state σ is capable of having its teleportation fidelity enhanced

by ρ’s presence.9 Given this, it will be useful to be able to quantify the amount of

9The teleportation fidelity (cf. Nielsen & Chuang, 2000, §9.2.2) is a measure of the ‘closeness’
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entanglement contained in a given state. In order to do this, we employ so-called

entanglement measures, the theory of which is outlined below.10

Local operations and classical communications

Perhaps the most basic concept of the theory of entanglement measures is that of

Local Operations and Classical Communications (LOCC). Roughly, LOCC refers to

local quantum operations (LO) that can be performed on a quantum system at a

given site, and coordinated with other local operations at other sites using classical

communications links (CC). For instance, in the quantum teleportation protocol (cf.

Appendix C), after the two parties to the protocol have been spatially separated

from one another, all of their subsequent actions can be classified as LOCC.

LOCC provides the key, within the theory of entanglement measures, for

distinguishing classical from non-classical correlations (which, for now, we simply

identify with entanglement).11 Recall the discussion which preceded Eq. (3.5)

above. Now imagine that, upon drawing a ball of type i from the urn, not only

Samantha, but Alice, Bob, and Charles also create their own individual quantum

states, ρAi , ρ
B
i , ρ

C
i , based on the shared information about the outcome i. In that

case, the resulting state of the overall system will be the mixed state:

ρSABC =
∑

i

piρ
S
i ⊗ ρAi ⊗ ρBi ⊗ ρCi . (3.7)

This procedure with urn and balls is an example of a procedure involving LOCC

operations. And since (3.7) is, in fact, the general form of a separable state, we may

conclude from this that every separable state is such that it can be created using

LOCC operations alone. Further, since correlations generable using only LOCC

operations can always be described as the result of some common classical cause

(this is built into the very definition of LOCC), it is reasonable to conclude that a

quantum state ρ can be generated perfectly using LOCC alone if and only if it is

of the input and output states in the teleportation protocol (cf. Appendix C).
10In the exposition which follows, I draw substantially from Plenio & Virmani (2007).
11Since communication (for instance, of the results of previous measurements) between the

parties to a quantum informational protocol may occur often and at any time during the process,

this will, in general, introduce highly complex dependencies into our description of the process.

These make it extraordinarily difficult, if not practically impossible, to give a precise mathematical

characterisation of the set of possible LOCC operations. As a workaround, larger more easily

characterisable classes of operations, which are sufficiently ‘LOCC-al’, are used as imperfect proxies

for the LOCC class. One such class is the class of separable operations, described in Appendix D.
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separable.

Note that one cannot increase the amount of entanglement contained in a given

state using LOCC operations (including combinations of local unitaries) alone. To

see why this is true, note first that, since only separable states can be created using

LOCC operations, it follows that one cannot generate an entangled state from an

unentangled one. Second, imagine transforming some entangled state ρ into another

state ρ′ using LOCC operations. Since ρ′ was obtained using only LOCC

operations, anything that can be done with ρ′ + LOCC operations can also be done

with ρ + LOCC. Hence, in terms of the resources made available for information

processing, ρ′ is (at best) no more entangled than ρ; ρ′ and ρ, therefore, will (at

best) contain an equal amount of entanglement.

Maximally entangled states

Consider bipartite (i.e., two-party) systems of ‘qudits’; i.e., d-dimensional quantum

systems (a qubit, for instance, is a qudit for which d = 2). Any pure state that is

local unitarily equivalent to

|Φ+
d 〉 =

|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉+ · · ·+ |d− 1〉 ⊗ |d− 1〉√
d

(3.8)

is a maximally entangled state. We describe it as such because from this state +

LOCC operations it is possible to prepare (with certainty) any desired two-party

d-dimensional qudit state. And since LOCC operations cannot increase the amount

of entanglement in a system, it follows that all states local unitarily equivalent to

(3.8) are also maximally entangled. This statement is absolute; i.e., states of the

form (3.8) are maximally entangled irrespective of which entanglement measure (to

be discussed in the next section) is used to impose an ordering on states.

For instance, consider the simple case of two qubits. For d = 2, a state of form

(3.8) is the Bell state |Φ+〉. We claim that |Φ+〉 is a maximally entangled state; i.e.,

that, with certainty, beginning with |Φ+〉 (or a state local unitarily equivalent to

|Φ+〉), we can prepare any arbitrary bipartite state |φ〉. To see why this is so,
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consider an arbitrary bipartite pure state in Schmidt decomposed form:12

|φ〉 = α|00〉ab + β|11〉ab. (3.9)

(here a and b refer to Alice’s and Bob’s qubits, respectively). We will now show how

to obtain |φ〉 from |Φ+〉 using exclusively LOCC transformations.

First, to the Bell state,

|Φ+〉 = |00〉ab + |11〉ab√
2

,

add an ancilla qubit in state |0〉 at Alice’s location:

1√
2
(|00〉aa|0〉b + |01〉aa|1〉b).

Now perform the unitary transformation |00〉 → α|00〉+ β|11〉; |01〉 → β|01〉+ α|10〉
on Alice’s system. This yields:

(α|00〉+ β|11〉)aa|0〉b + (β|01〉+ α|10〉)aa|1〉b√
2

=
α|00〉aa|0〉b + β|11〉aa|0〉b + β|01〉aa|1〉b + α|10〉aa|1〉b√

2

=
|0〉a(α|00〉ab + β|11〉ab) + |1〉a(β|10〉ab + α|01〉ab)√

2
(3.10)

We now instruct Alice to perform a local measurement on her ancilla system. If it

yields |0〉 then Bob need not do anything, else if Alice’s measurement yields |1〉, Bob
applies an X (i.e. a “NOT”) transformation to his qubit. In either case, the result is

|φ〉, as desired. Note that although we limited ourselves to the pure state case, it is

easy to show that any mixed state, ρ, can also be obtained from (3.8).

12It is a fact that any bipartite pure state can be expressed as:

|ψ〉 = Ua ⊗ Ub

N
∑

i=1

√
αi|i〉a|i〉b,

where the αi are positive real numbers called the Schmidt-coefficients of |ψ〉 (Plenio & Virmani,

2007). Since the local unitaries do not affect the entanglement properties of the state, we omit

them in (3.9).
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Entanglement measures

As we have just seen, a bipartite state ρ is said to be maximally entangled if we can

use it and LOCC operations to prepare any arbitrary bipartite state σ with

certainty. In the more general case, where ρ is not necessarily maximally entangled,

we will, in similar fashion, say that the amount of entanglement contained in ρ is

greater than or equal to the amount of entanglement contained in σ if the

transformation ρ→ σ can be performed using only LOCC operations.

Because of the limitations inherent in determining an ordering on entangled

states in the single copy setting (cf. Plenio & Virmani, 2007), entanglement

measures are sometimes defined with respect to the asymptotic regime. Here, the

basic idea is that we do not ask whether we may use the single state ρ in order to

exactly prepare the single state σ. Rather, we ask whether it is possible to achieve

the transformation ρ⊗n → σ⊗m, for large integers m and n; and we use the ratio,

m/n, as the basis for a measure of the relative entanglement contained in the two

states.13

We now consider a few specific entanglement measures.

Entanglement cost and distillable entanglement. Consider a bipartite qubit

state, ρ and a maximally entangled bipartite state Φ(K) ≡ |Φ+
K〉〈Φ+

K | of
K-dimensions. The entanglement cost, EC(ρ), associated with ρ quantifies the

amount of entanglement required in order to approximate n copies of ρ, starting

from the maximally entangled state. More formally, it is defined as the lowest rate r

for which the trace norm distance14 between Ψ(Φ(2rn)) and ρ⊗n approaches 0 for

large n, where Ψ is a trace preserving (series of) LOCC-al operation(s) performed

on Φ(2rn) with the object of obtaining ρ⊗n; i.e.,

EC(ρ) ≡ inf
{

r : lim
n→∞

[

inf
Ψ

tr|ρ⊗n −Ψ(Φ(2rn))|
]

= 0
}

. (3.11)

13In fact, even this condition is usually relaxed; i.e., rather than ask whether it is possible to

achieve the transformation ρ⊗n → σ⊗m, typically we ask only whether it is possible to achieve the

transformation ρ⊗n → σm, where σm is an approximation of σ⊗m. In this case, if, for some fixed

r = m/n, as n→ ∞, we can bring the state σm arbitrarily close to σ⊗m, then we say that the rate

r = m/n is achievable for this transformation.
14We use the trace norm distance, tr|σ − η|, for the sake of mathematical convenience, as a

measure of the distance between quantum states. Any suitable measure of distance, D(σ, η), could

have been used instead, however, as the definition of entanglement cost is independent of our

choice of distance function (cf. Plenio & Virmani, 2007).
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We would also like to know about the reverse process; i.e., we would like to know

the greatest rate r for which the distance between ρ⊗n and Φ(2rn) approaches 0 for

large n, where Ψ is now a LOCC operation on ρ⊗n performed in order to obtain Φ.

This process is known as entanglement distillation,15 and the measure associated

with it is distillable entanglement :

ED(ρ) ≡ sup
{

r : lim
n→∞

[

inf
Ψ

tr|Ψ(ρ⊗n)− Φ(2rn)|
]

= 0
}

. (3.12)

The distillable entanglement can be thought of as a measure of the ‘entanglement

potential’ of a state; it tells us the maximum possible rate at which many copies of a

‘noisy’ entangled state may be converted back into a maximally entangled state

using LOCC.

For pure states, these transformations are reversible in the asymptotic limit;

further, for pure states EC and ED are both equal to the entropy of entanglement

(Bennett et al., 1996), defined, for a pure state |ψ〉, as

E(|ψ〉〈ψ|) ≡ S(trA|ψ〉〈ψ|) = S(trB|ψ〉〈ψ|), (3.13)

where S is the von Neumann entropy: S(ρ) = −tr(ρ log2 ρ).
16 Thus for pure states,

there is a unique total ordering of entangled states in the asymptotic regime17

(yielded by the entropy of entanglement), while the reversibility of EC(ρ) and ED(ρ)

allows us to determine the optimal asymptotic rate of transformation:

E(|ψ1〉〈ψ1|)/E(|ψ2〉〈ψ2|) between any two pure states |ψ1〉 and |ψ2〉 (cf. Plenio &

Virmani, 2007).

Entanglement of formation. Unfortunately, the situation is more complicated

for mixed states, where measures of entanglement are not equivalent to the entropy

of entanglement, and where we do not have reversibility in general (Vidal & Cirac,

15It is also sometimes referred to as entanglement concentration, though this name is generally

reserved for the pure state case. Note that the fact that Ψ produces an approximation of Φ(K) is

particularly important for this case; for, recalling our earlier discussion, no exact transformation

from ρ⊗n to even one maximally entangled state is in general possible.
16For more on the von Neumann entropy, as well as on the other concepts of classical and

quantum information theory, see Appendix B.
17It should now be evident why the state (3.6) is not a maximally entangled state (indeed, any

state of the form |φ〉 = u|01〉+ v|10〉 is non-maximally entangled for u, v 6= 1√
2
). The reader who

doubts this should compare the entropy of entanglement of such a state with the entropy of

entanglement of any maximally entangled state.
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2001). For mixed states, in fact, the distillable entanglement and entanglement cost

are in general extraordinarily difficult to compute. Very little progress has been

made on solving this problem directly; however an alternative measure, the

entanglement of formation, offers some hope in this regard.

Given a mixed state, ρ, the entanglement of formation, EF (ρ), represents the

(lowest possible) average entanglement (as measured by the entropy of

entanglement) for pure state decompositions of ρ; i.e.,

EF (ρ) ≡ inf

{

∑

i

piE(|ψi〉〈ψi|) : ρ =
∑

i

pi|ψi〉〈ψi|
}

. (3.14)

Given that EF is expressed in terms of the entropy of entanglement associated with

the pure states making up particular decompositions of ρ, one should expect EF to

be closely related to EC and ED. Indeed, in its asymptotic version,

E∞
F (ρ) ≡ lim

n→∞
EF (ρ

⊗n)

n
, (3.15)

the entanglement of formation has been shown to be equal to the entanglement cost

(Hayden et al., 2001). While this, by itself, is of little help in computing

entanglement cost (the asymptotic entanglement of formation is no less difficult to

calculate), there are indications (but no proof as of yet) that the entanglement of

formation is additive; i.e., that EF (ρ) = E∞
F (ρ). Since the non-asymptotic version of

EF is not very difficult to calculate, then if the entanglement of formation is truly

additive, it would follow that EC is easily calculable as well. Whether or not EF is

additive, therefore, is an important open question.

Negativity. The negativity (cf. Vidal & Werner, 2002) is an entanglement

measure based on the trace norm of the partial transpose of a bipartite mixed state

ρAB. It measures the degree to which the partial transpose of ρAB:

ρTA ≡ (T ⊗ I)ρAB fails to be positive definite; i.e., the degree to which ρAB is

entangled on Peres’s criterion of separability (Peres, 1996); and it vanishes for

separable states. It is given by

N (ρAB) ≡ ‖ρTA‖1 − 1

2
. (3.16)
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A variant of the negativity is the multiplicative negativity (Datta et al., 2005):

M(ρAB) ≡ 1 + 2N (ρAB). (3.17)

This quantity is multiplicative in the sense that for a state which is a product state

of pairs of states, M for the overall system is equal to the product of the individual

values of M for each pair.

The negativity is not difficult to calculate, and in its logarithmic form,

EN (ρAB) ≡ log2‖ρTA‖1, (3.18)

the negativity is additive: EN (ρ1 ⊗ ρ2) = EN (ρ1) + EN (ρ2) (likewise for the

logarithmic form of the multiplicative negativity). The logarithmic negativity and

logarithmic multiplicative negativity, unfortunately, are not monotonic (i.e., they

increase under some LOCC operations).18

Multi-partite entanglement

The theory of entanglement measures extends beyond bipartite entanglement to the

more general case of multi-partite entanglement (i.e., entangled systems that are

shared between n parties). Unsurprisingly, moving from the bipartite to the

multi-partite setting introduces complications. For instance, in the multi-partite

setting there is no straightforward analogue of a bipartite maximally entangled state

from which all other bipartite states can be prepared using LOCC operations. In

the tripartite setting, for example, a natural candidate for a maximally entangled

state is the GHZ-state:

|GHZ〉 = 1√
2
(|0〉A|0〉B|0〉C + |1〉A|1〉B|1〉C). (3.19)

Unfortunately some states are unobtainable from the GHZ-state using LOCC alone;

one example is the W-state:

|W〉 = 1√
3
(|0〉A|0〉B|1〉C + |0〉A|1〉B|0〉C + |1〉A|0〉B|0〉C). (3.20)

While we will make use of the concept of multi-partite entanglement in what

18A bipartite entanglement measure E(ρ) mapping density matrices to positive real numbers is

monotonic if (i) ρ is separable whenever E(ρ) = 0 and (ii) E does not increase when LOCC

operations are applied to ρ.
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follows, we will not need to specifically consider multi-partite entanglement

measures. For a more in-depth treatment, see Plenio & Virmani (2007).

3.2.3 Purification

Every mixed state can be thought of as the result of taking the partial trace of a

pure state acting on a larger Hilbert space. In particular, for a mixed state ρA

acting on a Hilbert space HA, with spectral decomposition
∑

k pk|k〉〈k| for some

orthonormal basis {|k〉}, a purification (in general non-unique) of ρA may be given

by

|ψAB〉 =
∑

k

√
pk|kA〉 ⊗ |kB〉 ∈ HA ⊗HB,

where HB is a copy of HA. We then have ρA = trB(|ψAB〉〈ψAB|), with |ψAB〉 an
entangled state.

3.3 The necessity of entanglement for

explanation thesis

Recall our discussion of the Deutsch-Jozsa algorithm in §2.2. In the literature on

quantum computation (cf. Ekert & Jozsa 1998; Steane 2003) it is often suggested

that entanglement, such as that present in states like (2.4), is required if a quantum

algorithm is to be capable of achieving a speedup over its classical alternatives. I

will call this the necessity of an entangled state thesis (NEST). I will call the related

claim that entanglement is a necessary component of any explanation for quantum

speedup the necessity of entanglement for explanation thesis (NEXT).19

Note that although the NEXT is related to the NEST, these two claims are not

strictly speaking identical. As we will see in §3.5.1, it is possible for the NEXT to

be true even if the NEST is false (in the technical sense of §3.2.1), and it is not

incoherent to argue that the NEXT is false by citing, as a counter-example, a

quantum computer whose state is always entangled, as we shall see in §3.5.2.
19The attentive reader who has noticed that there is actually no entanglement in (2.4) when

n = 1 will be somewhat puzzled by both of these theses. In fact, as we will see, entanglement will

only appear for n ≥ 3. In what follows I will argue, however, that this turns out to be evidence for,

not against, the NEXT, and indeed does not contradict the NEST. This will be clarified in the

next section.
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3.4 De-quantisation

At first sight the following consideration seems problematic for both the NEST and

the NEXT. Consider the Deutsch-Jozsa algorithm (cf. §2.2) for the special case of

n = 1. This case is essentially a solution for Deutsch’s problem. Deutsch’s (1985)

original solution to this problem is regarded as the first quantum algorithm ever

developed and as the first example of what has since come to be known as quantum

speedup. If one considers the steps of the algorithm as given in §2.2, however, then
the reader can confirm that, when n = 1, at no time during the computation are the

two qubits employed actually entangled with one another. The thesis that

entanglement is a necessary condition for quantum speedup thus seems false. But

the situation is not as dark for the NEST and the NEXT as it appears, since for the

case of n = 1, it is also the case that the problem can be ‘de-quantised’, i.e., solved

just as efficiently using classical means.

One method for doing this (cf. Abbott, 2012) is with a computer which utilises

the complex numbers {1, i} as a computational basis in lieu of {|0〉, |1〉}. A complex

number z ∈ C can be written as z = a+ bi, where a, b ∈ R, and thus can be

expressed as a superposition of the basis elements in much the same way as a

qubit.20 The algorithm proceeds in the following way. We first note that the action

of Uf on the first n qubits in Eq. (2.4) can, for the case of n = 1, be expressed as:21

1√
2

(

(−1)f(0)|0〉+ (−1)f(1)|1〉
)

=
(−1)f(0)√

2

(

|0〉+ (−1)f(0)⊕f(1)|1〉
)

.

We now define an operator Cf , analogously to Uf , that acts on a complex number

as follows:

Cf(a+ bi) = (−1)f(0)
(

a + (−1)f(0)⊕f(1)bi
)

.

When f is constant, the reader can verify that Cf(z) = ±(a+ bi) = ±z. When f is

balanced, Cf(z) = ±(a− bi) = ±z∗. Multiplying by z/2 so as to project our output

back on to the computational basis, we find, for the elementary case of z = 1 + i,

20Regarding the physical realisation of such a computer, note that complex numbers can be

used, for instance, to describe the impedances of electrical circuits and that we can apply the

superposition theorem to their analysis.
21Note that, since f(0) = f(0), (−1)f(0)⊕f(0)⊕f(1) = (−1)f(1).
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that

f constant : 1
2
z · ±z = ±i

f balanced : 1
2
z · ±z∗ = ±1.

Thus for any z, if the result of applying Cf is imaginary, then f is constant, else if

the result is real, then f is balanced (indeed, by examining the sign we will even be

able to tell which of the two balanced or two constant functions f is). This

algorithm is just as efficient as its quantum counterpart.

It can similarly be shown (cf. Abbott, 2012) that no entanglement is present in

(2.4) when n = 2, and that for this case also it is possible to solve the problem

efficiently using classical means. When n ≥ 3, however, (2.3) is an entangling

evolution and (2.4) is an entangled state. Unsurprisingly, it is no longer possible to

define an operator Cf analogous to Uf that takes product states to product states,

and it is no longer possible to produce an equally efficient classical counterpart to

the Deutsch-Jozsa algorithm (cf. Abbott, 2012).

Indeed, for the general case, Abbott has shown that a quantum algorithm can

always be efficiently de-quantised whenever the algorithm does not entangle the

input states. Far from calling into question the role of entanglement in quantum

computational speedup, the fact that the Deutsch-Jozsa algorithm does not require

entanglement to succeed for certain special cases actually provides (since in these

cases it can be de-quantised) evidence for both the NEST and the NEXT.

3.5 Challenges to the necessity of entanglement

for explanation thesis

In their own analysis of de-quantisation, Jozsa & Linden (2003) similarly find that,

for pure quantum states, “the presence of multi-partite entanglement, with a

number of parties that increases unboundedly with input size, is necessary if the

quantum algorithm is to offer an exponential speed-up over classical

computation.”22 In the same article, however, Jozsa & Linden speculate as to

whether it may be possible to achieve exponential speedup, without entanglement,

using mixed states. In fact, as we will now see, it is possible to achieve a modest

22For some earlier results relating to specific classes of algorithms, see Linden & Popescu (2001);

Braunstein & Pati (2002). For a review, see Pati & Braunstein (2009).
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(i.e., sub-exponential) speedup using unentangled mixed states. As I will argue,

however, entanglement nevertheless plays an important role in the computational

ability of these states, despite their being unentangled in the technical sense of

§3.2.1. Thus, while such counter-examples demonstrate the falsity of the NEST,

they do not demonstrate the falsity of the NEXT.

3.5.1 The mixed-state Deutsch-Jozsa algorithm

We will call a ‘pseudo-pure-state’ of n qubits any mixed state that can be written in

the form:

ρ
{n}
PPS ≡ ε|ψ〉〈ψ|+ (1− ε)I ,

where |ψ〉 is a pure state on n qubits, and I is defined as the totally mixed state

(1/2n)I2n . It can be shown that such a state is separable (cf. §3.2.1) and remains so

under unitary evolution just so long as

ε <
1

1 + 22n−1
.

Now consider the Deutsch-Jozsa algorithm once again (cf. §2.2). This time,

however, let us replace the initial pure state |0n〉|1〉 with the pseudo-pure state:

ρ = ε|0n〉|1〉〈0n|〈1|+ (1− ε)I . (3.21)

The algorithm will continue as before, except that this time our probability of

success will not be unity.

To illustrate: assume that the system represented by ρ has been prepared in the

way most naturally suggested by (3.21); i.e., that with probability ε, it is prepared

as the pure state |0n〉|1〉, and with probability 1− ε, it is prepared as the completely

mixed state I . Now imagine that we write some of the valid Boolean functions

f : {0, 1}n → {0, 1} onto balls which we then place into an urn, and assume that

these consist of an equal number of constant and balanced functions. We select a

ball from the urn and then test the algorithm with this function to see if the

algorithm successfully determines f ’s type.

Consider the case when f is a constant function. In this case, we will say the

algorithm succeeds whenever it yields the bit string z = 0. We know, from §2.2, that
the algorithm will certainly succeed (i.e., with probability 1) when the system is



47

actually in the pure state |0n〉|1〉 initially. Given our particular state preparation

procedure, the system is in this state with probability ε. The rest of the time (i.e.,

with probability 1− ε), the system is in the completely mixed state I . In this

latter case, since there are 2n possible values that can be obtained for z, the

probability of successfully obtaining z = 0 will be 1/2n. Thus the overall probability

of success associated with the system when f is constant is:

P (z = 0|f is constant) = ε+ (1− ε)/2n. (3.22)

The probability of failure is:

P (z 6= 0|f is constant) =
2n − 1

2n
· (1− ε). (3.23)

In the case where f is balanced, a result of z 6= 0 represents success, and the

respective probabilities of success and failure are:

P (z 6= 0|f is balanced) = ε+
2n − 1

2n
· (1− ε), (3.24)

P (z = 0|f is balanced) = (1− ε)/2n. (3.25)

Note that as I mentioned in §3.2.1, mixed states can in general be prepared in a

variety of ways. What I have above called the ‘most natural’ state preparation

procedure associated with (3.21), in particular, is only one of many possible state

preparations that will yield an identical density matrix ρ. For ease of exposition,

and in order to see clearly why Eqs. (3.22-3.25) hold, it was easiest to assume, as I

did above, that the system has been prepared in the way most naturally suggested

by (3.21). But note that there is no loss of generality here; the identities (3.22-3.25)

do not depend on the fact that we have used this particular preparation procedure.

In any case, consider the alternative to the Deutsch-Jozsa algorithm of

performing classical function calls on f with the object of determining f ’s type.

The reader should convince herself that a single such call, regardless of the result,

will not change the probability of correctly guessing the type of the function f .

Thus the amount of information about f ’s type that is gained from a single classical

function call is zero.23 On the other hand, as we should expect given (3.22-3.25), for

the mixed-state version of the Deutsch-Jozsa algorithm, it can be shown that the

23This information gain is referred to as the mutual information between two variables (in this

case, between the type of the function and the result of a function call). For more on the mutual

information and other information-theoretic concepts, see Appendix B.
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information gained from a single invocation of the algorithm is greater than zero for

all positive ε, and that this is the case even when ε < 1
1+22n−1 ; i.e., the threshold

below which ρ no longer qualifies as an entangled state. Indeed, this is the case even

when ε is arbitrarily small (cf. Biham et al., 2004), although the information gain in

this case is likewise vanishingly small.

Explaining speedup in the mixed-state Deutsch-Jozsa algorithm

The first question that needs to be answered here is whether the sub-exponential

gain in efficiency that is realised by the mixed-state Deutsch-Jozsa algorithm should

qualify as quantum speedup at all. On the one hand, from the point of view of

computational complexity theory (cf. Appendix A), the solution to the

Deutsch-Jozsa problem provided by this algorithm is no more efficient than a

classical solution: from a complexity-theoretic point of view, a solution S1 to a

problem P is deemed to be just as efficient as a solution S2 so long as S1 requires at

most a polynomial increase in the (time or space) resources required to solve P as

compared with S2. From this point of view, only an exponential reduction in time

or space resources can qualify as a true increase in efficiency. Clearly, the

mixed-state Deutsch-Jozsa algorithm does not yield a speedup over classical

solutions, in this sense, when ε is small. In fact it can be shown (Vedral, 2010, 1148)

that exponential speedup, and hence a true increase in efficiency from a

complexity-theoretic point of view, is achievable only when ε is large enough for the

state to qualify as an entangled state.

On the other hand, there is a very real difference, in terms of the amount of

information gained, between one invocation of the black box (3.21) and a single

classical function call—which is all the more striking since the amount of

information one can gain from a single classical function call is actually zero.

Further, one should not lose sight of the fact that the complexity-theoretic

characterisation of efficient algorithms is artificial and, in a certain sense, arbitrary.

For instance, on the complexity-theoretic characterisation of computational

efficiency, a problem, which for input size n, requires ≈ n1000 steps to solve is

polynomial in terms of time resources in n and thus tractable, while a problem that

requires ≈ 2n/1000 steps to solve is exponential in terms of time resources in n and

therefore considered to be intractable. In this case, however, the ‘intractable’

problem will typically require much less time to compute than the ‘tractable’

problem, for all but very large n.24 Such extraordinary examples aside, for most

24For example, for n = 1, 000, 000, the easy problem requires (106)1000 = 106000 steps to
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practical purposes the complexity-theoretic characterisation of efficiency is a good

one. Nevertheless it is important to keep in mind that this is a practical definition

of efficiency which does not reflect any deep mathematical truth or make any deep

ontological claim about what is and is not efficient in the common or pre-theoretic

sense of that term.

But let us come back now from this slight digression to our main discussion, and

let us consider the question of whether entanglement plays a role in the speedup

exhibited by this mixed state. The strongest argument in favour of a negative

answer to this question is, I believe, the following. Recall that what I have called

the ‘most natural’ state preparation procedure associated with (3.21) is only one of

many possible ways to prepare the system represented by ρ. It is possible to prepare

the system in an alternate way if we so desire. Likewise, when ε is sufficiently small,

it is possible to prepare the final state of the computer, ρfin, as a mixture of

product states. This, in fact, is the significance of asserting that ρfin is unentangled.

Thus while the state preparation most naturally suggested by (3.21) may well

function as a conceptual tool for finding mixed quantum states that display a

computational advantage (i.e., by enabling a facile derivation of the identities

(3.22-3.25)), once found, it seems as though we may do away with this way of

thinking of the system entirely. Hence there seems to be no need to invoke

entanglement in order to explain the speedup obtainable with this state.

I believe this line of reasoning to be misleading, however, for it emphasises the

abstract density operator representation of the computational state at the cost of

obscuring the nature of the computational process that is actually occurring in the

computer. To the point: the density operator corresponding to a quantum system

should not be understood as a representation of the actual physical state of the

system. Rather, the density operator representation of a quantum system should be

understood as a representation of our knowledge of the space of physical states that

the system can possibly be in, and of our ignorance as to which of these physical

states the system is actually in.

From the point of view of quantum mechanics, it is pure states of quantum

systems which should be seen as representations of the ‘actual’ physical states of

such systems, for pure states represent the most specific description of a system that

is possible from within the theory. I have enclosed the word actual within inverted

commas in the preceding sentence in order to emphasise the weakness of the claim I

am making. This claim is not intended to rule out that there may be a deeper

complete while the hard problem requires 21000 steps.
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physical theory underlying quantum mechanics, within which quantum mechanical

pure states can be seen as merely derivative representations. Nor is it intended to

rule out that quantum mechanics only incompletely (as a matter of principle)

specifies the nature of the physical world. I am only making what should be the

uncontroversial claim that relative to quantum mechanics itself, pure states should

be interpreted as those which are most fundamental, in the sense that they

represent a maximally specific description, within the theory, of the systems in

question—i.e., they represent the best grasp available, from within that theory, of

the real physical situation.

Physics is the science of what is real, in the very minimal sense that physical

concepts purport to give us some idea of what the world is like. And if pure states

represent the best possible, i.e., the most specific, representation of the physical

situation from the point of view of a theory, then with right should they be treated

as the more fundamental concepts of the theory. Mixed states, on the other hand,

should be seen as derivative in the sense that they are abstract characterisations of

our knowledge of the space of pure states a system may be possibly in,25 and of our

ignorance of precisely which state within this space the system is actually in.

If the reader accepts this difference in fundamental status that I have accorded

to pure and mixed quantum states,26 then she should agree that if it is an

explanation of the physical process actually occurring in the computer that we

desire, then it will not do to limit ourselves to analysing the characteristics of the

computer’s ‘black box’ mixed state; rather, we should attempt to give a more

detailed ‘white box’ characterisation of the operation of the computer in terms of its

25If one prefers, one can think of a mixed state as a statistical state, representing the mean

values of a hypothetical ensemble of systems. The difference is inessential to this discussion.
26My claim is intended to be weak enough to be compatible with interpretations of the

quantum state such as Spekkens’s, in which quantum states are analogous to the state descriptions

of his toy theory (cf. Appendix F), in that they represent maximal, though in principle incomplete,

knowledge of the system in question. It is also intended to be compatible with Fuchs’s statement

that “... the quantum state represents a collection of subjective degrees of belief about something

to do with that system ...” (Fuchs, 2003, 989-990). Nevertheless, the compatibility of my claim

with Fuchs’s and Spekkens’s views may be doubted by some. This is not the place to attempt to

give a reading of either Fuchs’s or Spekkens’s opinions on the interpretation of the quantum state

description, however. While I may be incorrect as regards the compatibility of my claim with their

views, I hope that most readers will, regardless, appreciate the benign nature of and be agreeable

to the claim that I am making here. In any case I will be assuming it in the remainder of this

dissertation. (For a more in-depth treatment of Fuchs’s and Spekkens’s interpretation of the

quantum state description, see: Tait 2012.)
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underlying pure states. Recall the fact—which we noted in our earlier discussion of

de-quantisation—that the unitary evolution (2.3) is, in general, an entangling

evolution; i.e., it will take pure product states, such as, for instance, |0n〉|1〉, to
entangled states. Now imagine that the computer is initially prepared in the most

natural way suggested by the pseudo-pure state representation (3.21). Call this

‘most natural’ state preparation: sini. Imagine further that the computer evolves in

accordance with the entangling unitary transformation Uf . This will yield the

transformation

|0n〉|1〉 Uf−→ |φ〉

with probability ε, and the transformation

I
Uf−→ I

with probability 1− ε, where |φ〉 is an entangled state. Thus at the end of the

computation, the system will be in the state |φ〉 with probability ε and in the state

I with probability 1− ε. Call this combination of possible states for the system

sfin. Now at the end of the computation, the state of the computer will be

expressible by means of the density operator

ρfin = ε|φ〉〈φ|+ (1− ε)I .

The most natural way that suggests itself for preparing the system represented by

ρfin is sfin. However, one may instead imagine a state preparation procedure s′fin
involving only product states that would result in an equivalent density operator

representation. Because of this, it is concluded by some that entanglement plays no

role in the computational advantage exhibited by the computer in this case.

The significance of the fact that Uf is an entangling evolution, however, is that

sini, evolved in accordance with Uf , will not result in the combination of states

s′fin—rather, it will result in the combination of states sfin. Since both state

preparations, sfin and s′fin, yield the same density matrix representation, they are,

from this point of view, equivalent, but one cannot directly obtain s′fin from an

application of Uf to sini.
27

27I am indebted to Wayne Myrvold for suggesting this line of thought, and for helping to clear

up the conceptual confusions regarding this issue that have plagued me to date. I am also indebted

to the discussion in Jozsa & Linden (2003, §5). I should note, also, that Long et al. (2002) make a

similar point to the one made here; but in making it they unnecessarily rely on interpreting the

density matrix of a system as representing the average values of a physical ensemble (i.e. of an
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What of the fact, however, that ε in the state preparation sfin may be

vanishingly small in principle and yet still lead to a computational advantage—does

not this tell against attributing the speedup exhibited by the computer to

entanglement? I do not believe it does. One must not lose sight of the fact that

“vanishingly small” 6= 0. If ε were actually equal to zero, it is evident that there

would, in fact, be no performance advantage.

It is interesting, nevertheless, to consider the question of what can happen in the

quantum computer when ε = 0; i.e., when the state of the computer initially just is

the totally mixed state I . Note that this does not signify that it is impossible for

the computer to actually have been prepared in the pure state |0n〉|1〉 initially.
Rather, it represents the circumstance where we are completely ignorant of the

initial state preparation of the quantum computer; for instance, if the computer has

been prepared as an equally weighted mixture of the basis states:

ρini = I =
1

2n

2n−1
∑

x=0

|x〉〈x|. (3.26)

Suppose then, that the quantum computer, represented by the density operator

ρini = I , actually is in |0n〉|1〉 at the start of the computation. Is a computational

process occurring which would enable quantum speedup? From one point of view,

the answer is yes, for the entangling unitary evolution Uf evolves the computer to

an entangled state which is then capable of being utilised in principle in order to

solve the problem under consideration with fewer computational resources than a

classical computer. In fact, it is not even necessary for the computer to actually be

in the state |0n〉|1〉 initially to enable a performance advantage. As long as we know,

or at least are not completely ignorant of, the actual initial pure state of the

computer, any of the basis states can, with suitable manipulation, be used to obtain

a performance advantage.

From another point of view, however, the answer is no, for because we are

completely ignorant as to the actual initial state of the computer, we will be

completely ignorant as to which operation to perform in order to take advantage of

this resource. This sounds paradoxical, but I think it rather illustrates a distinction

that needs to be drawn here which will recur more than once in this dissertation:

between what is actually occurring in a physical system, on the one hand, and the

actual collection of physical systems). The objection is equally forceful, however, whether one

thinks of the mixed state as representing a physical or a statistical ensemble, and whether one

thinks of the probabilities as ignorance probabilities or as representing relative frequencies.
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use which can be made of it by us, who are attempting to achieve some particular

end. In the example we are considering here there assuredly is a process occurring

in the computer that is of the right sort to enable a quantum speedup, but because

we are completely ignorant of the computer’s initial state—i.e., because there is too

much ‘noise’ in the computer—we are unable to take advantage of it to achieve the

end of solving the Deutsch-Jozsa problem using fewer computational resources than

a classical computer.

3.5.2 The power of one qubit

In the last subsection we saw that it is possible to achieve a sub-exponential

speedup for the Deutsch-Jozsa problem with an unentangled mixed-state. We

concluded that while this does disprove the NEST, it does not constitute a

counter-example to the NEXT, since the computational algorithm in question is

successful only when the evolution of the state of the computer is an entangling

evolution; therefore the underlying final state of the computer will always contain

some entanglement despite the fact that the density operator representation of the

final state will be unentangled.

We now consider another purported counter-example to the NEXT. This is the

deterministic quantum computation with one qubit (DQC1) model of quantum

computation, which utilises a mixed quantum state to compute the trace of a given

unitary operator and displays an exponential speedup over known classical solutions.

As we will see, the claim sometimes made to the effect that the DQC1 achieves this

speedup without the use of entanglement is unsubstantiated. The NEXT, however,

is not the claim that any state that displays quantum computational speedup must

be entangled. That is the NEST. The NEXT is, rather, the different claim that

entanglement must play a role in any physical explanation of quantum speedup. We

saw in the last section how it is possible for the NEST to be false28 and the NEXT

to be true. In this section I will address the objection that the NEXT is false even if

it is the case that the state of the quantum computer is always entangled. Those

defending such a view claim that another measure of quantum correlations, quantum

discord, is far better suited for the explanatory role. In what follows I will argue

that this conclusion is misguided. Quantum discord is indeed an enormously useful

theoretical quantity for characterising mixed-state quantum computation—perhaps

even more useful than entanglement. Nevertheless, more than just pragmatic

28I mean false in the technical sense explained in §3.2.1.
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Figure 3.1: The DQC1 algorithm for computing the trace of a unitary operator.

considerations must be appealed to if one is to make the case that a particular

feature of quantum systems explains quantum speedup. Thus I will argue that when

one looks deeper, and considers the quantum state from the multi-partite point of

view, one finds that entanglement is involved in the production, and even in the

very definition, of quantum discord; indeed, there are some preliminary indications

that quantum discord is, in fact, but a manifestation of and not conceptually

distinct from entanglement.

The DQC1

In the DQC1, or as it is sometimes called: ‘the power of one qubit’, model of

quantum computation (cf. Knill & Laflamme, 1998),29 a collection of n ‘unpolarised’

qubits in the completely mixed state In/2
n is coupled to a single ‘polarised’ control

qubit, initialised to 1/2(I + αZ). When the polarisation, α, is equal to 1, the

control qubit is in the pure state |0〉〈0| = 1/2(I + Z), otherwise it is in a mixed

state. The problem is to compute the trace of an arbitrary n-qubit unitary operator,

Tr(Un). To accomplish this, we begin by applying a Hadamard gate to the control

qubit,30 which is then forwarded as part of the input to a controlled unitary gate

that acts on the n unpolarised qubits (see Figure 3.1). This results in the following

state for all of the n+ 1 qubits:

ρn+1 =
1

2n+1

(

|0〉〈0| ⊗ In + |1〉〈1| ⊗ In + α|0〉〈1| ⊗ U †
n + α|1〉〈0| ⊗ Un

)

=
1

2n+1

(

In αU †
n

αUn In

)

. (3.27)

29In this exposition of the DQC1, I am closely following (Datta et al., 2005).
30This will yield, for instance, when the control qubit is pure,

|0〉〈0| H−→ 1
2

(

|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|
)

.
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The reduced state of the control qubit is

ρc =

(

1 αTr(Un)
†

αTr(Un) 1

)

,

thus the trace of Un can be retrieved by applying the X and Y Pauli operators to

ρc. In particular, the expectation values of the X and Y operators will yield the real

and imaginary parts of the trace, 〈X〉 = Re[Tr(Un)]/2
n and 〈Y 〉 = −Im[Tr(Un)]/2

n,

respectively; so in order to determine, for instance, the real part, we run the circuit

repeatedly, measuring X on the control qubit at the end of each run, while assuming

that the results are part of a distribution whose mean is the real part of the trace.

Classically, the problem of evaluating the trace of a unitary matrix is believed to

be hard, however for the quantum algorithm it can be shown that the number of

runs required does not scale exponentially with n, yielding an exponential

advantage for the DQC1 quantum computer. When α < 1, the expectation values,

〈X〉 and 〈Y 〉, are reduced by a factor of α and it becomes correspondingly more

difficult to estimate the trace. However as long as the control qubit has non-zero

polarisation, the model still provides an efficient method for estimating the trace

(and thus an exponential speedup over any known classical solution) in spite of this

additional overhead.

We might ask whether, in a way analogous to the mixed-state Deutsch-Jozsa

algorithm, we can make α small enough so that the overall state of the DQC1 is

demonstrably separable. The answer seems to be no. On the one hand, for any

system of n+ 1 qubits there is a ball of radius r (measured by the Hilbert-Schmidt

norm and centred at the completely mixed state), within which all states are

separable (Braunstein et al., 1999; Gurvits & Barnum, 2003). On the other hand,

the state of the DQC1 is at all times at a fixed distance α2−(n+1)/2 from the

completely mixed state. Unfortunately the radius of the separable ball decreases

exponentially faster than 2−(n+1)/2 (Datta et al., 2005, 2).

Thus, as (Datta et al., 2005, 2) assert, there appears to be good reason to

suspect that the state (3.27) is an entangled state, at least for some Un; but it is not

obvious where this entanglement is. On the one hand, there is no bipartite

entanglement among the n unpolarised qubits. On the other hand the most natural

bipartite split of the system, with the control qubit playing the role of the first

subsystem and the remaining qubits playing the role of the second, reveals no

entanglement between the two subsystems, regardless of the choice of Un. When

α > 1/2, entanglement can be found when we examine other bipartite divisions
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(a) (b)

(c) (d) (e)

Figure 3.2: Some of the bipartite splits possible in the DQC1 for n = 4. No
entanglement can ever occur amongst the n unpolarised qubits (a) or between the
polarised qubit and the rest (b); however, bipartite splits such as (c), (d), and (e) can
exhibit entanglement (Datta et al., 2005).

amongst the n+ 1 qubits (see Figure 3.2), however, besides being exceedingly

difficult to detect, the amount of entanglement in the state (as measured by the

multiplicative negativity; cf. §3.2.2) becomes vanishingly small as n gets large.

Commenting on this circumstance, Datta et al. (2005, 13) write “This hints that the

key to computational speedup might be the global character of the entanglement,

rather than the amount of the entanglement. ... what happier motto can we find for

this state of affairs than Multam ex Parvo, or A Lot out of A Little.”

Others have expressed a different viewpoint on the matter. In fact, both the

DQC1 and the mixed-state version of the Deutsch-Jozsa algorithm have led many

(see for instance, Vedral 2010) to seriously question whether entanglement plays a

necessary role in the explanation of quantum speedup. The result has been a shift

in investigative focus from entanglement to other types of quantum correlations.

One alternative in particular, quantum discord (which I will explain in more detail

shortly), has received much attention in the literature in recent years (see, e.g.,

Merali, 2011).

On the one hand, the following facts all seem to run counter to the NEXT: there

is no entanglement in the DQC1 circuit between the polarised and unpolarised

qubits—the most natural bipartite split that suggests itself—during a computation;

tests to detect entanglement along other bipartite splits in the DQC1 when α ≤ 1/2

have thus far been unsuccessful;31 and finally, even when α is relatively large, only a

vanishingly small amount of entanglement can be found in the state of the DQC1

(3.27). On the other hand, when we consider the correlations between the polarised

31The criterion used by Datta et al. (2005) to detect entanglement is the Peres-Horodecki, or

Positive Partial Transpose (PPT) criterion (Peres, 1996; Horodecki et al., 1996). The partial

transpose of a bipartite system,
∑

ijkl p
ij
kl|i〉〈j| ⊗ |k〉〈l| acting on HA ⊗HB is defined (with respect
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and unpolarised qubits from the point of view of quantum discord, it turns out that

the discord at the end of the computation is always non-zero along this bipartite

split for any α > 0 (Datta et al., 2008). Datta et al. (2008, 4) therefore write, and I

agree, that “for some purposes, quantum discord might be a better figure of merit

for characterizing the quantum resources available to a quantum information

processor.” All the same, as I will argue below, it is a mistake to conclude as they

and others do that the NEXT is false; i.e., that entanglement may play no role in

the explanation of the quantum speedup of the DQC1 (Datta et al., 2008; Vedral,

2010; Merali, 2011); for the NEXT is compatible with all of these facts.

Quantum discord

Quantum discord (Zurek, 2000; Henderson & Vedral, 2001; Ollivier & Zurek,

2002)32 quantifies the difference between the quantum generalisations of two

classically equivalent measures of mutual information,33

Ic(A : B) = H(A) +H(B)−H(A,B), (3.28)

Jc(A : B) = H(A)−H(A|B). (3.29)

to the system B) as:

ρTB ≡ (I ⊗ T )ρ =
∑

ijkl

pijkl|i〉〈j| ⊗ (|k〉〈l|)T =
∑

ijkl

pijkl|i〉〈j| ⊗ |l〉〈k|,

where T is the transpose map on matrices. The PPT criterion states that, if ρ is a separable state,

then the partial transpose of ρ has non-negative eigenvalues. Satisfying the PPT criterion is a

necessary (but not sufficient) condition for the joint density matrix of two systems to be separable.

While Datta et al. were unable to detect entanglement in the DQC1 (along any bipartite split) for

the case of α ≤ 1/2, they nevertheless note that it is very likely that both entanglement and bound

entanglement are present in the state. A state exhibits bound entanglement (cf. Hyllus et al., 2004)

when, in spite of the fact that it is entangled, no pure entangled state can be obtained from it by

means of LOCC operations. One important characteristic of bound entangled states is that they

(at least sometimes) satisfy the PPT criterion despite the fact that they are entangled.
32Quantum discord was introduced independently by both Henderson & Vedral and by Ollivier

& Zurek, with slight differences in their respective formulations (Henderson & Vedral consider not

just projective measurements but positive operator valued measures more generally). These and

other alternative formulations of quantum discord do not differ in essentials. The definition of

discord I introduce here is Ollivier & Zurek’s.
33See Appendix B for an overview of the basic concepts of classical and quantum information

theory.
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These two expressions are not equivalent quantum mechanically, for while (3.28) has

a straightforward quantum generalisation in terms of the von Neumann entropy S:

Iq(A : B) = S(A) + S(B)− S(A,B), (3.30)

things are more complicated for the quantum generalisation of (3.29). The quantum

counterpart, S(A|B), to the conditional entropy requires a specification of the

information content of A given a determination of the state of B. Determining the

state of B requires a measurement, however, which requires the choice of an

observable. But in quantum mechanics observables are, in general, non-commuting.

Thus the conditional entropy will be different depending on the observable we

choose to measure on B. If, for simplicity, we consider only perfect measurements,

represented by a set of one dimensional projection operators, {ΠB
j }, this yields, for

the quantum version of (3.29), the expression:

Jq(A : B) = S(A)− S(A|{ΠB
j }). (3.31)

We now define discord as the minimum value (taken over {ΠB
j }) of the difference

between (3.30) and (3.31):

D(A,B) ≡ min{ΠB
j }Iq(A : B)−Jq(A : B). (3.32)

Discord is, in general, non-zero for mixed states, while for pure states it effectively

becomes a measure of entanglement (Datta et al., 2008, 3); i.e., for pure states it is

equivalent to the entropy of entanglement (cf. §3.2.2).
Interestingly, there are some mixed states which, though separable, exhibit

non-zero quantum discord. For instance, consider the following bipartite state:

ρdisc =
1

2
(|0〉〈0|A ⊗ |0〉〈0|B) +

1

2
(|1〉〈1|A ⊗ |+〉〈+|B). (3.33)

This state is obviously separable. Since |0〉 and |+〉 are non-orthogonal states,

however, Jq(A : B) will yield a different value depending on the experiment

performed on system B; and thus this state will yield a non-zero quantum discord.

Note that this is impossible for a classical state: classically, it is always possible to

prepare a state as a mixture of orthogonal product states.

In most of the literature on this topic, one is introduced to quantum discord as a

quantifier of the non-classical correlations present in a state which are not
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necessarily identifiable with entanglement. Such an interpretation of the significance

of this quantity is supported by the fact that, in the classical scenario at least, the

mutual information contained in a system of two random variables is held to be

representative of the extent of the correlations between them. Since the quantum

generalisations of the two classically equivalent measures of mutual information

Ic(A : B) and Jc(A : B) are not equivalent, then, this is taken to represent the

presence of non-classical correlations over and above the classical ones, some, but

not all of which may be accounted for by entanglement, and some by ‘quantum

discord’.

Interpreting discord as a type of non-classical correlation is nevertheless

puzzling. Consider, for instance, a classically correlated state represented by the

following probability distribution:

1

2
([+]l, [+]r) +

1

2
[−]l[−]r. (3.34)

Here, let [·]l represent the circumstance that Linda (in Liverpool) finds a letter in

her mailbox today containing a piece of paper on which is inscribed the specified

symbol (+ or −), and let [·]r represent the occurrence of a similar circumstance for

Robert (in Ravenna). According to the probability distribution, it is equally likely

that they both receive a letter today inscribed with + as it is that they both receive

one inscribed with −, but it cannot happen that they each today receive letters with

non-matching symbols. These correlations are easily explainable classically, of

course. It so happens that yesterday I flipped a fair coin. I observed the result of

the toss and accordingly jotted down either + or − on a piece of paper, photocopied

it, and sent one copy each to Robert in Ravenna and Linda in Liverpool (by

overnight courier, of course).

A quantum analogue for classically correlated states such as (3.34) is a mixed

state decomposable into product states:

∑

ij

pij|i〉〈i| ⊗ |j〉〈j| (3.35)

such that the |i〉 and |j〉 are mutually orthogonal sub-states of the first and second

subsystem, respectively. For such a state it is easy to provide a ‘hidden variables’

explanation, similar to the one above, that will account for the observed

probabilities of joint experiments on the two subsystems.

We can equally give such a local hidden variables account of the discordant state
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ρdisc: tossing a fair coin, I prepare the state |0〉〈0|A ⊗ |0〉〈0|B if the coin lands heads,

and |1〉〈1|A ⊗ |+〉〈+|B if it lands tails. Let Pr(X, Y |a, b, λ) refer to the probability

that Alice’s a-experiment and Bob’s b-experiment determine their qubits to be in

states X and Y , respectively, given that the result of the coin toss is λ. Then

(omitting bras and kets for readability):

Pr(0, 0|ẑ, ẑ, H) = Pr(0, ·|ẑ, ·, H)× Pr(·, 0|·, ẑ, H) = 1,

P r(1, 1|ẑ, ẑ, T ) = Pr(1, ·|ẑ, ·, T )× Pr(·, 1|·, ẑ, T ) = 1/2,

P r(0,+|ẑ, x̂, H) = Pr(0, ·|ẑ, ·, H)× Pr(·,+|·, x̂, H) = 1/2,

P r(1,+|ẑ, x̂, T ) = Pr(1, ·|ẑ, ·, T )× Pr(·,+|·, x̂, T ) = 1,

and so on. More generally, Pr(X, Y |a, b, λ) = Pr(X, ·|a, ·, λ)× Pr(·, Y |·, b, λ). Thus
once we specify the value of λ there are no remaining correlations in the system and

the probabilities for joint experiments are factorisable. This should be unsurprising.

Given a specification of λ, the state of the system is in a product state, after all, and

thus can be prepared (as we saw earlier) using only LOCC operations.

Contrast this with an entangled quantum system such as, for instance, the one

represented by the pure state

|Φ+〉 = |00〉+ |11〉√
2

.

Bell’s theorem (to be discussed in more detail in the following chapters)

demonstrates that the correlations between subsystems present in such a state

cannot be reproduced by any local hidden variables theory in the manner described

above. These correlations are non-classical.

There is certainly something non-classical about a state such as ρdisc; viz., a

quantum state such as ρdisc, though separable, cannot be prepared as a mixture of

orthogonal product states. Yet it is always possible to so prepare classical states. As

a result, the information one can gain about Alice’s system through an experiment

in the {+,−} basis on Bob’s system will be different from the information one can

gain about Alice’s system through an experiment in the computational basis on

Bob’s system. On the one hand, in the absence of a specification of a hidden

parameter such as λ, given an experiment on B in the computational basis which

determines B to be in state |0〉, it is still unclear, because of the way in which

system B was prepared, whether the joint system is in the state |0〉 ⊗ |0〉 or in the

state |1〉 ⊗ |+〉. Given an experiment on B in the {+,−} basis which yields |+〉, on
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the other hand, it is perfectly clear which product state the joint system is in. But

these facts by themselves are certainly not indicative of the presence of non-classical

correlations between the two subsystems.

There is one indirect sense, however, in which ρdisc can be said to contain

non-classical correlations. Recall from §3.2.3 that any mixture can be considered as

the result of taking the partial trace of a pure entangled state on a larger Hilbert

space. Given that, as I argued in §3.5.1, the pure state representation of a quantum

system should be taken as fundamental, we can consider the bipartite state ρdisc as

in reality but a partial representation of a tripartite entangled quantum system,

where the third party is an external environment with enough degrees of freedom to

purify the overall system. And since entangled systems do not admit of a

description in terms of local hidden variables (or, if one prefers, in terms of LOCC),

it follows that the system partially represented by ρdisc can legitimately be said to

contain non-classical correlations.

Even so it is unclear how these non-classical correlations per se can have

anything to do with the quantum discord exhibited by ρdisc, for it is also the case

that a classically correlated mixture of orthogonal product states, i.e. one of the

form (3.35), can be purified in just the same way as a discordant one and hence also

the case that it can be given a multi-partite representation in which entanglement is

present.

As we will now see, however, there is in fact a tight relationship between the

amount of discord associated with a bipartite mixed state and the amount of

entanglement associated with a tripartite representation of that state. And,

interestingly from our point of view, what emerges from this is a correspondingly

tight relationship between the quantum speedup exhibited by the DQC1 and the

amount of entanglement associated with its purified tripartite representation, and

thus a confirmation, not a refutation, of the NEXT.

Explaining speedup in the DQC1

Quantum discord was introduced independently by Henderson & Vedral and by

Ollivier & Zurek in 2001 and 2002, respectively; however, it was only recently given

an operational interpretation, independently by Madhok & Datta (2011) and by

Cavalcanti et al. (2011).34 On both characterisations, quantum discord is

operationally defined in terms of the entanglement consumed in an extended version

34I present here the definition given by Cavalcanti et al., although the conclusion I will draw is

the same regardless of which definition is used.
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of the quantum state merging protocol (cf. Horodecki et al., 2005).

In the quantum state merging protocol, three parties: Alice, Bob, and

Cassandra, share a state |ψABC〉. Quantum state merging characterises the process,

|ψABC〉 → |ψB′BC〉,

by which Alice effectively transfers her part of the system to Bob while maintaining

its coherence with Cassandra’s part. It turns out that in order to effect this protocol

a certain amount of entanglement must be consumed (quantified on the basis of the

quantum conditional entropy, S(A|B); cf. Appendix B.). When we add to this the

amount of entanglement needed (as quantified by the entanglement of formation; cf.

§3.2.2) to prepare the state |ψABC〉 to begin with, the result is a quantity identical

to the quantum discord between the subsystems belonging to Alice and Cassandra

at the time the state is prepared.

The foregoing operational interpretation of discord has an affinity with an

illuminating analysis of the DQC1 circuit due to Fanchini et al. (2011). Fanchini

et al. show that a relationship between quantum discord and entanglement emerges

when we consider the DQC1 circuit, not as a bipartite system composed of polarised

and unpolarised qubits respectively, but as a tripartite system in which the

environment plays the role of the third subsystem. Fanchini et al. note that an

alternate way of characterising the completely mixed state of the unpolarised

qubits, In/2
n, is to view it as part of a bipartite entangled state, with the second

party an external environment having enough degrees of freedom to purify the

overall system. This yields a tripartite representation for the DQC1 circuit as a

whole (see Figure 3.3).

Fanchini et al. show that, for an arbitrary tripartite pure state, there is a

conservation relation between entanglement of formation and quantum discord. In

particular, the sum of the bipartite entanglement that is shared between a

particular subsystem and the other subsystems of the system cannot be increased

without increasing the sum of the quantum discord between this subsystem and the

other subsystems as well (and vice versa). In the DQC1, after the application of the

controlled not gate (see Figure 3.1), there is an increase in the quantum discord

between B and A. This therefore necessarily involves a corresponding increase in

the entanglement between A and the combined system BE. All of this accords with

what we would expect given the above operational interpretation of quantum

discord: an increase in quantum discord requires an increase in the entanglement
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(a) (b)

Figure 3.3: A (pure) tripartite representation of the elements of the DQC1 protocol
before (a) and after (b) the application of the controlled not gate. Black and grey
thunderbolts represent entanglement and discord, respectively. After the application of
the controlled not gate, there is an increase in the discord between A and B and a
corresponding increase in the entanglement between A and the combined system BE.

available for consumption in a potential quantum state merging process.

Note also that from this tripartite point of view, there is just as much

entanglement in the circuit as there is discord; in particular, exactly as for quantum

discord, there is entanglement in the circuit whenever it displays a quantum

speedup, i.e., for any α > 0.

Fanchini et al. speculate that it is not the presence of entanglement or discord

(however the latter is interpreted) per se that is necessary for the quantum speedup

of the DQC1, but rather the ability of the circuit to redistribute entanglement and

discord. This thought seems to be confirmed by a theoretical result of Brodutch &

Terno (2011), who show that shared entanglement is required in order for two

parties to bilocally implement35 any bipartite quantum gate—even one that

operates on a restricted set L of unentangled input states and transforms them into

unentangled output states. This means, in particular, that entanglement is required

in order to implement a gate that changes the discord of a quantum state.

By themselves, these considerations already amount to confirmations of the

NEXT, for entanglement appears to be involved in the very definition of discord,

and it appears that we require entanglement even for the production of discord in a

quantum circuit. But in addition, there are indications that quantum discord need

not be appealed to at all to give an account of quantum speedup (though such a

characterisation will of course be less practical, as I have already mentioned), in

light of one other recent theoretical result. Devi et al. (2008; 2011) have pointed out

that more general measurement schemes than the positive operator valued measures

(POVM) used thus far exist for characterising the correlations present in bipartite

quantum systems.

POVMs are associated with completely positive maps and are well suited for

35Bilocal implementation means, in this context, an implementation in which Alice and Bob are

limited to LOCC operations.
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describing the evolution of a system when we can view the system as uncorrelated

with its external environment. When the system is initially correlated with the

environment, however, the reduced dynamics of the system may, according to Devi

et al., be ‘not completely positive’. But as Devi et al. show, from the point of view

of a measurement scheme that incorporates not completely positive maps in addition

to completely positive maps, all quantum correlations reduce to entanglement.

In sum, it is, I believe, unsurprising that on the standard analysis the DQC1

circuit displays strange and anomalous correlations in the form of quantum discord,

for the DQC1 is typically characterised as a bipartite system, and from the point of

view of a measurement framework that incorporates only completely positive maps.

As Fanchini et al. have shown, however, the DQC1 circuit is more properly

characterised, not as an isolated system, but as a system initially correlated with an

external environment. The evolution of such a system is best captured by a

measurement framework incorporating not completely positive maps, and within

such a framework, the anomalous correlations disappear and are subsumed under

entanglement. From this point of view the equivalence of entanglement and discord

for pure bipartite states is also unsurprising, for it is precisely pure states for which

the correlation with the environment can be ignored and for which a framework

incorporating only completely positive maps is appropriate.

The use of not completely positive maps to characterise the evolution of open

quantum systems is not wholly without its detractors. The question of whether such

not completely positive maps are ‘unphysical’ is an interesting and important one,

though I will not address it here.36 But regardless of the answer to this question, it

should be clear, even without the appeal to this more general framework, that

entanglement has not been shown to be unnecessary for quantum computational

speedup. Far from being a counter-example to the NEXT, the DQC1 model of

quantum computation rather serves to illuminate the crucial role that entanglement

plays in the quantum speedup displayed by this computer.

3.6 Conclusion

Quantum entanglement is considered by many to be a necessary resource that is

used to advantage by a quantum computer in order to achieve a speedup over

classical computation. Given Jozsa & Linden’s and Abbott’s general results for pure

36For a more detailed discussion, and qualified defence of the use of not completely positive

maps, see Cuffaro & Myrvold (2012).
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states, and given that, as I argued in §3.5.1, a pure state should be considered as

the most fundamental representation of a quantum system possible in quantum

mechanics, the burden is upon those who deny the NEXT to either produce a

counter-example or to show, in some other more principled way, why the view is

false. We examined two such counter-examples in this chapter. Upon closer

examination we found neither of these, neither the sub-exponential speedup of the

unentangled mixed-state version of the Deutsch-Jozsa algorithm, nor the

exponential speedup of the DQC1 model of quantum computation, demonstrate

that entanglement is unnecessary for quantum speedup; they rather make clearer

than before the role that entanglement does play, and point the way to a fuller

understanding of both entanglement and quantum computation.

3.7 Next steps

We have just concluded that entanglement is a necessary component of any

explanation of quantum speedup—that the NEXT is true. The natural next

question to ask is whether entanglement is also sufficient. This question, in turn,

can be divided into two sub-questions. First: is entanglement a sufficient resource to

enable quantum speedup? And second: does entanglement suffice to explain

quantum speedup. The answer to both of these questions, I will argue, is yes. We

will consider the first question in Chapter 4 and the second in Chapter 5.
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Chapter 4

Entanglement as a Sufficient

Resource to Enable Quantum

Computational Speedup

4.1 Introduction

The answer to the question of whether entanglement is a sufficient resource to

enable quantum computational speedup is commonly held to be no. To support this

conclusion, appeal is usually made to the Gottesman-Knill theorem (Nielsen &

Chuang, 2000, §10.5.4). According to this theorem, any quantum algorithm or

protocol which exclusively utilises the elements of a restricted set of quantum

operations can be re-expressed using an alternative formalism which shows us how

the algorithm can be efficiently simulated by classical means. It so happens that

among the quantum computational algorithms and informational protocols which

exclusively utilise operations from this set are some that are interesting and

important—for instance, the teleportation and superdense coding protocols. And

both of these, and others, involve the use of entangled quantum states.

Reflecting on this circumstance, Jozsa & Linden write, in their influential (2003)

article, in a section entitled Is entanglement a key resource for computational

power? :

Recall that the significance of entanglement for pure-state computations

is derived from the fact that unentangled pure states ... of n qubits have

a description involving poly(n) parameters (in contrast to O(2n)

parameters for a general pure state). But this special property of
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unentangled states (of having a ‘small’ descriptions [sic.]) is contingent

on a particular mathematical description, as amplitudes in the

computational basis. If we were to adopt some other choice of

mathematical description for quantum states (and their evolution), then,

although it will be mathematically equivalent to the amplitude

description, there will be a different class of states which will now have a

polynomially sized description; i.e. two formulations of a theory which

are mathematically equivalent (and hence equally logically valid) need

not have their corresponding mathematical descriptions of elements of

the theory being [sic.] interconvertible by a polynomially bounded

computation. With this in mind we see that the significance of

entanglement as a resource for quantum computation is not an intrinsic

property of quantum physics itself, but is tied to a particular additional

(arbitrary) choice of mathematical formalism for the theory. ... An

explicit example of an alternative formalism and its implications for the

power of quantum computation is provided by the so-called stabilizer

formalism and the Gottesman-Knill theorem ... Thus, in a fundamental

sense, the power of quantum computation over classical computation

ought to be derived simultaneously from all possible classical

mathematical formalisms for representing quantum theory, not any

single such formalism and associated quality (such as entanglement), ...

(Jozsa & Linden, 2003, 2029-2030).

Similar considerations, presumably, lead Datta et al. to write: “the

Gottesman-Knill theorem ... demonstrates that global entanglement is far from

sufficient for exponential speedup.” (2005, 1). Nielsen & Chuang (2000, ibid.)

writing some years earlier, are, perhaps, more cautious: “The Gottesman-Knill

theorem highlights how subtle is the power of quantum computation. It shows that

some quantum computations involving highly entangled states may be simulated

efficiently on classical computers. ... There is much more to quantum computation

than just the power bestowed by quantum entanglement!” I say that this statement

is more cautious because while Nielsen & Chuang correctly point out that an

entangled quantum state will not, so to speak, yield a quantum speedup of its own

accord, they (intentionally or not) decline to make the stronger claim, suggested in

my above quote of Jozsa & Linden, that further (or perhaps some other) physical

resources besides entanglement (which are, according to Jozsa & Linden, hidden by

the formalism) are required in order to make quantum speedup possible.
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Two distinct claims must be distinguished here. The first is this: the mere

presence of an entangled quantum state is sufficient to realise quantum

computational speedup. The Gottesman-Knill theorem shows, conclusively, that

this claim is false. The second, for our purposes more interesting claim is the

following: quantum entanglement is a resource sufficient to enable, or make possible,

quantum computational speedup; i.e., no other physical resources are required to

make quantum speedup possible if one begins with an entangled quantum system.

This claim, or so I will argue, is true. As I will explain in the remainder of this

chapter, the quantum operations to which the Gottesman-Knill theorem applies are

precisely those which will never cause a qubit to take on an orientation, with respect

to the other subsystems comprising the total system of which it is a part, that

yields a violation of the Bell inequalities. The fact that the Gottesman-Knill

theorem holds should therefore come as no surprise. Given this, I will argue that it

is misleading to conclude that more than entanglement is required to enable

quantum computational speedup.

There is, of course, one sense in which more than just entanglement is required:

in order to outperform a classical computer, a quantum computer realising an

entangled quantum state must utilise more than the relatively small portion of its

state space that is accessible from the Gottesman-Knill group of transformations

alone. It is for this reason that the first thesis which I referred to above is false.

Nevertheless, if one is asked what physical resources are required in order to make

quantum speedup possible, then one can legitimately answer, or so I will argue, that

the answer is no more than quantum entanglement.

The chapter will proceed as follows. After introducing the Gottesman-Knill

theorem and its implications for the classical simulability of certain quantum

algorithms involving quantum entanglement, in §4.2, I then consider Bell’s theorem,

in §4.3, drawing particular attention to the circumstances in which the Bell

inequalities are satisfied by classical hidden variables theories of the quantum state.

In §4.4, I then argue that the possibility of an efficient classical simulation of the

quantum algorithms in question is equally evident from a reflection on Bell’s

theorem as it is from a reflection on the Gottesman-Knill theorem, and I discuss the

implications of this for our understanding of the resources involved in quantum

speedup, coming to the conclusion that I have already mentioned.
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4.2 Preliminaries: The Gottesman-Knill theorem

Call1 an operator A a stabiliser of the state |ψ〉 if

A|ψ〉 = |ψ〉. (4.1)

For instance, consider the Bell state of two qubits:

|Φ+〉 = 1√
2
(|0〉|0〉+ |1〉|1〉).

For this state we have

(X ⊗X)|Φ+〉 = 1√
2
(|1〉|1〉+ |0〉|0〉)

=
1√
2
(|0〉|0〉+ |1〉|1〉) = |Φ+〉,

(Z ⊗ Z)|Φ+〉 = 1√
2
(|0〉|0〉+ (−|1〉)(−|1〉))

=
1√
2
(|0〉|0〉+ |1〉|1〉) = |Φ+〉.

X ⊗X and Z ⊗Z are thus both stabilisers of the state |Φ+〉. Here, X and Z are the

Pauli operators:

X ≡ σ1 ≡ σx ≡
(

0 1

1 0

)

, Z ≡ σ3 ≡ σz ≡
(

1 0

0 −1

)

. (4.2)

The remaining Pauli operators, I (the identity operator) and Y , are defined as:

I ≡ σ0 ≡ σI ≡
(

1 0

0 1

)

, Y ≡ σ2 ≡ σy ≡
(

0 −i
i 0

)

. (4.3)

The Pauli group, Pn, of n-fold tensor products of Pauli operators (for instance, for

n = 2, P2 ≡ {I ⊗ I, I ⊗X, I ⊗ Y, I ⊗Z,X ⊗ I,X ⊗X,X ⊗ Y, ...}) is an example of a

group of operators closed under matrix multiplication.

Call the set, VS, of states that are stabilised by every element in S, where S is

some group of operators closed under matrix multiplication, the vector space

stabilised by S. Consider a state |ψ〉 ∈ VS. From the definition of a unitary

1The exegesis of the Gottesman-Knill theorem given here is indebted to that given in Nielsen &

Chuang (2000).
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operator, we have, for any s ∈ S and any unitary operation U ,

U |ψ〉 = Us|ψ〉 = UsU †U |ψ〉. (4.4)

Thus UsU † stabilises U |ψ〉 and the vector space UVS is stabilised by the group

USU † ≡ {UsU †|s ∈ S}. Consider, for instance, the state |0〉, stabilised by the Z

operator. To determine the stabiliser of this state after it has been subjected to the

(unitary) Hadamard transformation H|0〉 = |+〉 we simply compute HZH†. Thus

the stabiliser of |+〉 is X .

Now let s1, ..., sn be elements of S. s1, ..., sn are said to generate the group S if

every element of S can be written as a product of elements from s1, ..., sn. For

instance, the reader can verify that the subgroup, A, of P3, defined by

A ≡ {I⊗3, Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z,Z ⊗ I ⊗ Z} can be generated by the elements

{Z ⊗Z ⊗ I, I ⊗Z ⊗Z} (Nielsen & Chuang, 2000, §10.5.1). We may thus alternately

express A in terms of its generators as follows: A = 〈Z ⊗ Z ⊗ I, I ⊗ Z ⊗ Z〉.
In order to compute the action of a unitary operator on a group S it suffices to

compute the action of the unitary operator on the generators of S. For instance,

|0〉⊗n is the unique state stabilised by 〈Z1, Z2, ..., Zn〉 (where the latter expression is

a shorthand form of 〈Z ⊗ I⊗n−1, I ⊗ Z ⊗ I⊗n−2, ..., I⊗n−1 ⊗ Z〉). Consequently, the
stabiliser of the state H⊗n|0〉⊗n is 〈X1, X2, ..., Xn〉. Note that this state, expressed in

the standard state vector formalism,

H⊗n|0〉⊗n =

(

1

2n/2
(|0〉+ |1〉)n

)

=

(

1

2n/2

2n−1
∑

x

|x〉
)

,

specifies 2n different amplitudes. Contrast this with the stabiliser description of the

state in terms of its generators 〈X1, X2, ..., Xn〉, which is linear in n and thus

capable of an efficient classical representation.

Using the stabiliser formalism, it can be shown that all (as well as all

combinations) of the following gates are capable of an efficient classical

representation: Pauli gates, Hadamard gates, phase gates (i.e.,π/2 rotations of the

Bloch sphere for a single qubit about the ẑ-axis), and CNOT gates; as well as state

preparation in the computational basis and measurements of the Pauli observables.

This is the content of the Gottesman-Knill theorem (Nielsen & Chuang, 2000,

§10.5.4).
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What is especially notable about this theorem from the point of view of our

discussion is that some of the states which may be realised through the operations

in this set are actually entangled states. In particular, by combining a Hadamard

and a CNOT gate, one can generate any one of the Bell states (which one is

generated depends on the value assigned to the input qubits); i.e.,

|0〉|0〉 H⊗I−−→ |0〉|0〉+ |1〉|0〉√
2

CNOT−−−−→ |0〉|0〉+ |1〉|1〉√
2

= |Φ+〉,

|0〉|1〉 H⊗I−−→ |0〉|1〉+ |1〉|1〉√
2

CNOT−−−−→ |0〉|1〉+ |1〉|0〉√
2

= |Ψ+〉,

|1〉|0〉 H⊗I−−→ |0〉|0〉 − |1〉|0〉√
2

CNOT−−−−→ |0〉|0〉 − |1〉|1〉√
2

= |Φ−〉,

|1〉|1〉 H⊗I−−→ |0〉|1〉 − |1〉|1〉√
2

CNOT−−−−→ |0〉|1〉 − |1〉|0〉√
2

= |Ψ−〉.

In fact many quantum algorithms utilise just such a combination of gates. One of

these, for instance, is the well-known teleportation algorithm (see Appendix C). If

all of the operations from this set are efficiently classically simulable, however, then

it appears as though entanglement, by itself, cannot be a sufficient resource for

realising quantum speedup, for evidently there are quantum algorithms utilising

entangled states that are efficiently simulable classically.

In what follows I will argue that this conclusion is not warranted. An entangled

state, I will contend, provides sufficient resources to enable quantum computational

speedup. What the Gottesman-Knill theorem actually shows, I will argue, is that,

in certain special cases, the resources provided by an entangled state are not utilised

to their full potential. This becomes especially clear when we consider Bell’s

theorem, and in particular, the circumstances under which the Bell inequalities are

satisfied by classical hidden variables theories of the quantum state. As we will see,

the possibility of an efficient classical simulation of certain quantum algorithms is

equally evident from a consideration of Bell’s theorem as it is from a consideration

of the Gottesman-Knill theorem, and that reflecting on Bell’s theorem helps us to

understand better exactly how quantum entanglement is not being fully exploited in

the quantum algorithms we are considering.



72

4.3 Bell’s theorem

For a system in the singlet state (|Ψ−〉), the expectation value for joint experiments

on its subsystems is given by the following expression:

〈σm ⊗ σn〉 = −m̂ · n̂ = − cos θ. (4.5)

Here σm, σn represent spin-m and spin-n experiments on the first (Alice’s) and

second (Bob’s) subsystem, respectively, with m̂, n̂ the unit vectors representing the

orientations of the two experimental devices, and θ the difference in these

orientations. Note, in particular, that when θ = 0, 〈σm ⊗ σn〉 = −1 (i.e.,

experimental results for the two subsystems are perfectly anti-correlated), when

θ = π, 〈σm ⊗ σn〉 = 1 (i.e., experimental results for the two subsystems are perfectly

correlated), and when θ = π/2, 〈σm ⊗ σn〉 = 0 (i.e., experimental results for the two

subsystems are not correlated at all).

Consider the following attempt (Bell, 2004 [1964]) to reproduce the quantum

mechanical predictions for this state by means of a hidden variables theory. Let the

hidden variables of the theory assign, at state preparation, to each subsystem of a

bipartite quantum system, a unit vector λ̂ (the same value for λ̂ is assigned to each

subsystem) which determines the outcomes of subsequent experiments on the system

as follows. Let the functions Aλ(m̂), Bλ(n̂) represent, respectively, the outcome of a

spin-m and a spin-n experiment on Alice’s and Bob’s subsystem. Define these as:

Aλ(m̂) = sign(m̂ · λ̂),
Bλ(n̂) = −sign(n̂ · λ̂). (4.6)

where sign(x) is a function which returns the sign (+, -) of its argument.

The reader can verify that the probability that both Aλ(m̂) and Bλ(n̂) yield the

same value, and the probability that they yield values that are different (assuming a

uniform probability distribution over λ̂), are respectively:

Pr(+,+) = Pr(−,−) = θ/2π,

Pr(+,−) = Pr(−,+) =
1

2

(

1− θ

π

)

, (4.7)

with θ the (positive) angle between m̂ and n̂. This yields, for the expectation value
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of experiments on the combined state:

〈σm ⊗ σn〉 =
2θ

π
− 1. (4.8)

When θ is a multiple of π/2, this expression yields predictions identical to the

quantum mechanical ones: perfect anti-correlation for θ ∈ {0, 2π, ...}, no correlation

for θ ∈ {π/2, 3π/2, ...}, and perfect correlation for θ ∈ {π, 3π, ...}. However, for all
other values of θ there are divergences from the quantum mechanical predictions.

It turns out that this is not a special characteristic of the simple hidden

variables theory considered above. No hidden variables theory is able to reproduce

the predictions of quantum mechanics if it makes the very reasonable assumption

that the probabilities of local experiments on Alice’s subsystem (and likewise Bob’s)

are completely determined by Alice’s local experimental setup together with a

hidden variable taken on by the subsystem at the time the joint state is prepared.

Consider the following2 expression relating different spin experiments on Alice’s and

Bob’s respective subsystems for arbitrary directions m̂, m̂′, n̂, n̂′:

|〈σm ⊗ σn〉+ 〈σm ⊗ σn′〉|+ |〈σm′ ⊗ σn〉 − 〈σm′ ⊗ σn′〉|. (4.9)

As before, let Aλ(m̂) ∈ {±1}, Bλ(n̂) ∈ {±1} represent the results, given a

specification of some hidden variable λ, of spin experiments on Alice’s and Bob’s

subsystems. We make no assumptions about the nature of the ‘common cause’ λ

this time—it may take any form. What we do assume is that, as I mentioned above,

the outcomes of Alice’s experiments depend only on her local setup and on the value

of λ; i.e., we do not assume any further dependencies between Alice’s and Bob’s

local experimental configurations. This ‘factorisability’ (cf. Eq. 3.4) allows us to

substitute 〈Aλ(m̂) · Bλ(n̂)〉 for 〈σm ⊗ σn〉, thus yielding:
∣

∣

〈

Aλ(m̂)Bλ(n̂)
〉

+
〈

Aλ(m̂)Bλ(n̂
′)
〉
∣

∣+
∣

∣

〈

Aλ(m̂
′)Bλ(n̂)

〉

−
〈

Aλ(m̂
′)Bλ(n̂

′)
〉
∣

∣

=
∣

∣

〈

Aλ(m̂)
(

Bλ(n̂) +Bλ(n̂
′)
)〉
∣

∣ +
∣

∣

〈

Aλ(m̂
′)
(

Bλ(n̂)− Bλ(n̂
′)
)〉
∣

∣

≤
〈
∣

∣Aλ(m̂)
(

Bλ(n̂) +Bλ(n̂
′)
)
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′)
(

Bλ(n̂)− Bλ(n̂
′)
)
∣

∣

〉

, (4.10)

2In this exposition of the CHSH inequality I have followed Myrvold (2008).
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which, since |Aλ(·)| = 1, is

≤
〈
∣

∣Bλ(n̂) +Bλ(n̂
′)
∣

∣

〉

+
〈
∣

∣Bλ(n̂)−Bλ(n̂
′)
∣

∣

〉

≤ 2, (4.11)

where the last inequality follows from the fact that Bλ(·) can also only take on

values of ±1. This expression, a variant of the ‘Bell inequality’ (2004 [1964]), is

known as the Clauser-Horne-Shimony-Holt (CHSH) inequality (cf. Clauser et al.,

1969; Bell, 2004 [1981]).

Quantum mechanics violates the CHSH inequality for some experimental

configurations. For example, let the system be in the singlet state; i.e., such that its

statistics satisfy (4.5); and let the unit vectors m̂, m̂′, n̂, n̂′ (taken to lie in the same

plane) have the orientations 0, π/2, π/4,−π/4 respectively. The differences, θ,

between the different orientations (i.e., m̂− n̂, m̂− n̂′, m̂′ − n̂, and m̂′ − n̂′) will all

be in multiples of π/4 and we will have:

〈σm ⊗ σn〉 = 〈σm ⊗ σn′〉 = 〈σm′ ⊗ σn〉 =
√
2/2, (4.12)

〈σm′ ⊗ σn′〉 = −
√
2/2, (4.13)

|〈σm ⊗ σn〉+ 〈σm ⊗ σn′〉|+ |〈σm′ ⊗ σn〉 − 〈σm′ ⊗ σn′〉| = 2
√
2 6≤ 2. (4.14)

The predictions of quantum mechanics for arbitrary orientations m̂, m̂′, n̂, n̂′

cannot, therefore, be reproduced by a hidden variables theory in which all

correlations between subsystems are due to a common parameter endowed to them

at state preparation. They can, however, be reproduced by such a hidden variables

theory for certain special cases. In particular, the inequality is satisfied (as the

reader can verify) when m̂ and n̂, m̂ and n̂′, m̂′ and n̂, and m̂′ and n̂′ are all

oriented at angles with respect to one another that are given in multiples of π/2.

4.4 Entanglement as a sufficient resource

Recall the content of the Gottesman-Knill theorem: Pauli gates, Hadamard gates,

phase gates, and CNOT gates; as well as state preparation in the computational

basis and measurements of the Pauli observables are efficiently simulable by a

classical computer. It is commonly concluded, from this, that entanglement cannot

therefore be sufficient to enable a quantum algorithm to achieve a speedup over its

classical counterpart. When one notes that all of the operations which comprise this
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set involve rotations of the Bloch sphere that are multiples of π/2, however, the fact

that algorithms restricted to just these operations are classically simulable should

come as no surprise. In an entangled quantum system, no amount of kπ/2

transformations of one of the constituent systems will cause it to take on an

orientation with respect to the other subsystems that is not a multiple of π/2 (unless

it was so oriented initially). And as we have seen above, the statistics of compound

states for which the difference in orientation between subsystems is a multiple of π/2

are capable in general of being reproduced by a classical hidden variables theory.

In light of this it is misleading, I believe, to conclude, on the basis of the

Gottesman-Knill theorem, that entanglement is not a sufficient resource to enable

quantum computational speedup. What the Gottesman-Knill theorem shows us is

that simply having an entangled state is not enough to enable one to outperform a

classical computer; one must also use such a state to its full potential; i.e., one must

not limit oneself to transformations which utilise only a small portion of the

system’s allowable state space. In this sense, it is indeed correct to say that

entanglement is insufficient to enable quantum speedup. However, if one intends by

the claim that entanglement is insufficient—something very different—that further

physical resources are required to enable speedup, then I submit that this

claim—which is the one most relevant to us—is incorrect.

Consider the individual state spaces of two quantum mechanical systems, Hd1
1

and Hd2
2 , where d1 and d2 are the dimensionality of the first and second system,

respectively. In quantum mechanics, the overall state space of the combined system

is given by the tensor product of the two systems, Hd1
1 ⊗Hd2

2 , with dimensionality

d1 · d2. Thus the state space of a combined system of n two-dimensional qubits is

⊗nH2, with overall dimensionality 2n. In classical mechanics, on the other hand, the

total state space of two individual subsystems ωd1
1 , ωd2

2 is given by the Cartesian

product, ωd1
1 × ωd2

2 , with dimensionality d1 + d2. Thus the dimensionality of the

state space of a classical system of n two-dimensional subsystems is 2n.

As Ekert & Jozsa (1998) note, the possibility of entangled quantum systems is

what is responsible for this difference in the allowable state space. To illustrate,

consider how one would go about representing a general superposition of n

two-dimensional values classically. It is possible to describe certain classical systems

in terms of superpositions; for instance, the state of motion of a vibrating string can

be characterised as a superposition of its two lowest energy modes, in the same way

that the state of a qubit can be characterised as a superposition of the states |0〉
and |1〉. The joint state of a system of n strings, however, will always be a product
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state; general superpositions which include, in particular, values representable by

entangled quantum states, cannot be physically represented using n classical

systems in this way.

It is, of course, possible to classically represent a general superposition of n

two-dimensional values in a more roundabout way; one may use, for instance, a

single classical system which allows for the discrimination of 2n resource levels

within it. The cost of such a representation scales exponentially with n, however,

either (if the spacing between resource levels is kept fixed) in terms of the total

amount of resource required, or (if the total amount of the resource is kept fixed) in

terms of the increasing precision required to discriminate the different resource

levels.

Quantum systems, in contrast, are not subject to this limitation; because of the

possibility of entanglement, a superposition of n d-dimensional quantum systems

can be used to represent a general superposition of n d-dimensional values directly ;

i.e., without incurring the cost associated with the roundabout classical method.3

Quantum mechanical systems, therefore, allow us to efficiently exploit the full

representational capacity of Hilbert space. Classical systems do not; they require

exponentially more resources in order to do so. If we have an n-fold entangled

quantum system, therefore, it follows straightforwardly that the possibilities for

representation associated with such a system cannot, in general, be efficiently

simulated classically. (And note that from this point of view it is quite unsurprising

that the Deutsch-Jozsa algorithm can be classically simulated (§3.4) for n < 3:

notice that for n < 3, 2n = 2n.)4

Evidently, it is possible to utilise only a small portion of the state space of a

quantum system—exactly that portion of the state space which, as the Bell

inequalities demonstrate, is accessible efficiently by an n-fold classical system—but

this has no bearing on the nature of the actual physical resources that are provided

by the quantum system. Analogously, a life vest may be said to be sufficient to keep

me afloat on liquid water. I must actually wear it if it is to perform this function, of

course; but that is not a fact about this piece of equipment’s capabilities, only

3Duwell (2004, Ch. 8) calls this ‘well-adaptedness’.
4There is the caveat, of course, that a quantum computer will never be found, when

experimented upon, to be in one of these ‘extra’, nonseparable, states, and thus the final ‘readout’

of a quantum computer will never be one of those states. Any problem, therefore, whose solution

requires such a representation cannot be solved efficiently by a quantum computer. Nevertheless,

such states represent a wealth of resources that are capable of being used as intermediaries in the

calculation of a solution which is representable as a separable final state.
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about my choice whether to use it or not.

What if the waves are rough? It may be that in this case my life vest will not be

sufficient to save me. Analogously, in the presence of noise, as noted by Linden &

Popescu (2001), entanglement may not be sufficient to enable one to achieve

exponential quantum speedup. Nevertheless, even in rough weather I will at least

have a better chance of surviving with my life vest on than I will without it.

Likewise, as we saw in our discussion of the mixed state Deutsch-Jozsa algorithm

(§3.5.1), even in the presence of noise, an entangled quantum state will be sufficient

to enable some (though perhaps only a very small) quantum speedup.

4.5 Conclusion

In this chapter I have argued that there is an important sense—the most important

sense, for our purposes—in which entanglement may be said to provide sufficient

physical resources to enable a quantum computer to achieve quantum

computational speedup. In support of this conclusion, I argued that claims to the

contrary rest on a misunderstanding of the implications of the Gottesman-Knill

theorem—that indeed, far from being a problem for the view that entanglement is a

sufficient resource, the Gottesman-Knill theorem serves to highlight the role that is

actually played by entanglement in the quantum computer and to clarify exactly in

what sense it is sufficient.

As is well known, quantum speedup has not been conclusively proven. It may be

that in every case of purported quantum speedup, there actually is some hitherto

unknown classical algorithm that is capable of achieving an exponential speedup

over its currently known classical alternatives. From this point of view, therefore, I

cannot have conclusively shown in this chapter that quantum entanglement is

sufficient for quantum speedup; for it may be the case that quantum speedup is

impossible.5 I hope, however, that the considerations that I have brought to the fore

in this chapter may serve to do the following: first, I hope that they will lend weight

to the claim that quantum computers can outperform classical computers, second, I

hope that they will clarify exactly why it is that they should be able to do so, and

finally, I hope that they will point the way to a proof, in the not too distant future,

5It is worthwhile to note, however, that even if quantum speedup is impossible, the—still

interesting—question as to why it is that quantum computers are able to solve certain

computational problems in polynomial time remains. I am indebted to Filippo Annovi for this

observation.
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of this conjecture.

4.6 Next steps

In the last chapter I argued that entanglement is a necessary component of any

explanation of quantum speedup, while in this chapter I argued that, as a physical

resource, it is sufficient to enable quantum computational speedup. One is tempted,

therefore, to end our investigation here. Our task is not done yet, however, for even

if one is convinced by all of the arguments I have given thus far, it will still be

possible to object that entanglement is insufficient in the following sense. What we

have been seeking for is an explanation of quantum speedup, and while it may be

true that entanglement is a sufficient resource to enable quantum computational

speedup, it does not follow that entanglement is sufficient to explain quantum

speedup. The interpretation of quantum mechanics and of entanglement in

particular has long been a topic of very controversial debate. It may therefore be

objected that, even after determining entanglement to be a necessary and sufficient

resource for enabling quantum speedup, we have not explained quantum speedup

until we have explained quantum entanglement itself. We will address this issue in

the next chapter.
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Chapter 5

Entanglement as the Physical

Explanation of Quantum

Computational Speedup

5.1 Introduction

In the previous chapter I argued that, in the sense most relevant to our

investigation, entanglement should be seen as a sufficient resource for quantum

computational speedup; I argued that when the implications of the Gottesman-Knill

theorem are properly understood, they do not contradict the claim that

entanglement is sufficient, but rather highlight precisely the sense in which this

claim is true. In this chapter I will address the issue of whether entanglement is

sufficient to explain quantum speedup as well.

To this purpose I will now proceed in the following way. I will begin, in §5.2, by
formulating a tentative explanation for quantum speedup in terms of quantum

entanglement, while at the same time outlining the way in which I take

entanglement to be explanatory; viz., the type of explanation that is being offered

when one appeals to entanglement. I will then consider, beginning in §5.3, a possible

challenge to the view that entanglement is the explanation of quantum speedup, to

the effect that one has not explained quantum speedup until one has explained why

quantum systems may sometimes become entangled, where one assumes that the

answer to a why? question of this kind must involve a causal-mechanical description.

The envisioned argument begins by considering that, according to John Stachel,

entanglement should not be characterised as essentially involving physical
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interactions, but rather as arising from a more abstract set of requirements known

as ‘Feynman’s rules’. But since entanglement should not, according to this

reasoning, be construed as essentially involving physical interactions, it cannot be

explained as arising from some cause, and therefore, according to this objection,

cannot form the essential part of a physical explanation for quantum speedup. In

§5.6 I argue, in response, that these abstract requirements themselves can be

accounted for in terms of physical interactions, and that Feynman’s rules and

quantum entanglement are, in one sense, but two sides of the same coin.

5.2 A physical explanation for quantum speedup:

Answering the how-possibly? question

5.2.1 Physical explanation

If we consider, in a general way, the ‘act’ of explanation, one way to characterise it

is in terms of the following distinctions. First, there is that for which an explanation

has been requested: some thing or process which is the object of the explanation.

Second, there is the person to whom the explanation is addressed: the recipient of

the explanation. Finally, there is the explanatory text itself. An ideal explanatory

text will represent the object for which an explanation has been requested with

perfect accuracy (relative to a theory of such objects), and at the same time, it will

do so in a way which results in a perfect comprehension of the object on the part of

the recipient of the explanation.1

While an ideal explanation of this sort would be desirable, in practice (and

perhaps even in principle) we must settle for far less. For on the side of the object,

we are not possessed with the perfect knowledge of its state (its detailed structural

features or detailed initial conditions) which we require in order to produce a perfect

description of it. On the other side, the cognitive limitations of the recipient must

also be taken into account. For even if a perfect description of the object were

available, it would likely be impossible for a finite agent to comprehend such a

description in its entirety. Further, a perfectly detailed description will invariably

contain information that is irrelevant, for the agent, to the question being asked; it

may thus serve only to distract the recipient. For us, therefore, explanation involves

1The notion of ‘perfect comprehension’ is, of course, a vague one, but it will not be necessary,

for our purposes, to elaborate upon it further.
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a choice. Given an explanatory question, one must aim at an explanatory text

which strikes the right balance between these two aspects of the act of explanation.

In some cases, we will choose to place most (but never all) of the emphasis on

describing the object itself. Call this an ‘ontic’ explanation, where we are to

understand by this only that such an explanatory text attempts to represent the

grasp of the objective features of the object provided to us by our best theory of

such objects. In other cases, for reasons of expediency and ease of comprehension,

we will place less emphasis on the more immediate features of the object in question

and situate the explanatory text at a level removed from the object. In these cases,

it will be understood that such higher-level descriptions are reducible in principle to

lower-level descriptions; thus that these higher-level descriptions are translatable in

principle into ‘ontic language’.

Finally, there will be some cases in which high-level descriptions of a different

sort will be employed, either simply for ease of exposition or, in certain situations,

because high-level descriptions of the reducible sort are not to be had. We may call

this last sort of explanation ‘analogical’, where this is not intended in any particular

technical sense of that term. Here, we can imagine those useful heuristics which

help us to understand certain aspects of phenomena. And while such analogical

descriptions can be explanatory, in the sense that they help to illuminate certain

aspects of the behaviour of the objects of our investigation, they cannot (and are

not intended to) be construed by the explanatory recipient as revealing the

objective features of these objects. These are not ontic explanations, in the sense

just described.

Now I mentioned that what we are to understand as ontic with respect to a

certain class of objects should be understood to be relative to whatever theory of

such objects we take to be true. Our own investigation concerns the physical

explanation of quantum speedup. Such an explanation should therefore describe the

features of quantum systems, as described by physical theory, which enable them to

outperform classical systems. A physical explanation for quantum speedup,

therefore, will be an example of ontic explanation, in the sense in which I have just

characterised that mode of explanation.

There are yet further distinctions among the varieties of explanation, along a

different dimension than the distinctions discussed in the current section. Here I

mean the differences that can be identified with respect to the characterisation of

the explanatory question itself. We will consider these next.
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5.2.2 Why? questions and how-possibly? questions

Scientific explanations are typically taken to be answers to why? questions. As

Hempel & Oppenheim (1948, 135), for instance, write:

To explain the phenomena in the world of our experience, to answer the

question “why?” rather than only the question “what?”, is one of the

foremost objectives of all rational inquiry; and especially, scientific

research in its various branches strives to go beyond a mere description

of its subject matter by providing an explanation of the phenomena it

investigates.

Hempel and Oppenheim’s own Deductive-Nomological (D-N) model of scientific

explanation, along with Hempel’s later Inductive-Statistical (I-S) model, were, for

many years, enormously influential in the debate over exactly what it means to

properly answer a why? question of this sort. Explanations, for Hempel and

Oppenheim, are arguments. They involve the subsumption of a particular set of

initial conditions under a law or a set of laws. Together, the set of initial conditions

and laws form the explanans (the premises of the argument). Given the explanans,

the explanandum statement (a statement of the fact to be explained, which is the

conclusion of the argument) follows either deductively (in the case of D-N) or

inductively (in the case of I-S). The explanans is the answer, in just this sense, to

the question of why the event expressed by the explanandum statement occurred.

The counter-examples to Hempel and Oppenheim’s characterisation of scientific

explanation which later began to emerge are well-known and I will not rehearse all

of them here (for a survey, see: Salmon 1989). But let us pause, for a moment, on

the so-called ‘flagpole’ counter-example to the D-N model, where we are asked to

imagine a flagpole standing in a field on a level stretch of ground under a clear blue

sky. It is evident that, from the relevant set of initial conditions and physical laws, a

D-N argument can be formulated to infer that (and hence explain why) the flagpole

casts a shadow of a particular length. Problematically, however, an equally good

explanation (by D-N lights) of the height of the flagpole that appeals to the length

of its shadow can be given. Thus, it was argued that even if it is admitted that the

amenability to D-N form is necessary for explanation, it does not appear to be

sufficient to capture exactly what we mean when we say that an answer has been

given to (at least some) of the why? questions we may want to ask.

With respect to just what those further aspects of explanation might be,

however, there is no consensus. One central debate is over exactly where the ‘right
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balance’ between the object and the recipient of explanation should be struck;

particularly, over whether any scientific explanation worthy of the name must be

ontic in nature, in the sense in which I alluded to in the previous section.

Proponents of this view are motivated in part by considerations such as the flagpole

example, which seem to suggest that what is required in a model of explanation is a

way to capture the asymmetrical cause-effect relationship between the facts cited in

the explanans and the fact cited in the explanandum.

Sylvain Bromberger’s (1966) and Bas van Fraassen’s (1980) work on why?

questions did much to clarify the issues. Not content to focus solely on the proper

characterisation of the answers to such questions, Bromberger and van Fraassen

investigated the proper way to analyse these questions themselves. Van Fraassen, in

particular, argued that what in certain contexts may seem like an inappropriate

answer to a request for explanation will, in other contexts, constitute a perfectly

good one. In some contexts, for instance, the length of a structure’s shadow may be

taken to explain its height:

That tower marks the spot where he killed the maid with whom he had

been in love to the point of madness. And the height of the tower? He

vowed that shadow would cover the terrace where he first proclaimed his

love, with every setting sun—that is why the tower had to be so high

(van Fraassen, 1980, 133-134).

For van Fraassen, all explanations are answers to why? questions, where these

are of the form “Why (is it the case that) P in contrast to (other members of) X?”,

and where the second half of this schema is taken as implicit in context and

typically left unstated. X is the contrast class: a set of alternatives to P . Thus

“Why did you dye your hair black?” is, absent an explicit or implicit contrast class,

ambiguous. It can be interpreted, for example, as either “Why did you dye your hair

black, as opposed to blond or blue or orange?”, or alternatively, “Why did you dye

your hair black, as opposed to not dying it at all?”. An answer to a why? question

will be one that favours P over any of its alternatives in the given contrast class.

I will not go through, in detail, the impressive machinery of van Fraassen’s

theory of why? questions. It is sufficient to point out that van Fraassen’s theory

convincingly shows (at least for this author) that what we take as the appropriate

answer to a particular why? question will depend in large part on the context in

which the question is asked. Thus, while in some contexts it may be that the

appropriate answer to a why? question should be ontic in nature, in other contexts
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this may not be the case, even when the context is broadly scientific. In the former

cases, we should expect an answer to appeal to actual causes and causal histories of

phenomena, while in the latter cases we may be satisfied with formal or informal

analogies.

As illuminating as van Fraassen’s theory of why? questions has been with

respect to these issues, however, if it is taken as a comprehensive analysis of

explanatory questions as such, then it cannot succeed, for there are other questions

in addition to why? questions that one may wish to have answered.2

Of these other types of explanatory question, one of these is the so-called

how-possibly? question. For instance: “How can Santa Claus possibly manage to

deliver all of those toys in just one evening?”. Such a question does not ask for the

reason why Santa Claus does this, but for a description of how he is able to do it. A

good answer to this question will consist of an account of the special characteristics

of the sled and of the reindeer (and especially of Rudolph’s nose), it will discuss the

circumference of the earth, the number of deliveries to be made, and the properties

of the chimneys in use in various parts of the globe, among other things.

As Wesley Salmon notes, the answer to a how-possibly? question need not

involve a reference to actual events :

... a DC-9 jet airplane recently crashed upon takeoff at Denver’s

Stapleton Airport during a snowstorm. One peculiar feature of this

accident is that the plane flipped over onto its back. There are many

explanations of a crash under the circumstances, but I wondered how it

could have flipped over. Two how-possibly explanations were mentioned

in the news reports. One is that it encountered wing-tip turbulence from

another airplane just after it became airborne. Another was suggested

by the report of a survivor, who claimed that the plane was de-iced three

times during its wait for departure, but that on the latter two of these

occasions one wing, but not the other, was treated. If one wing had an

accumulation of ice on its leading edge while the other did not, the

difference in lift provided by the two wings might have been sufficient

cause for the plane to flip over. As I write this paragraph I have not yet

2Note that while van Fraassen (1980) takes explanatory questions to be exhausted by why?

questions, Bromberger (1966, 90) (who nevertheless focuses exclusively on why? questions in his

essay) does not: ““explanation” may refer to the answers of a huge variety of questions besides

why-questions, the only requirement being that their oratio obliqua form fit as grammatical object

of the verb “to explain” and its nominalization “explanation of,” ...”
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heard the final determination regarding the cause of this crash. Both

potential explanations I have mentioned are satisfactory answers to the

how-possibly question, but we do not know the correct answer to the

why-question (Salmon, 1989, 137).

Of course, one might always attempt to reframe a how-possibly? question as a

why-possibly? question: “Why is it that Santa Claus can deliver all of those toys in

just one night, Mommy?” is an example of such an attempted reformulation. This

is not the place to venture into a debate over the proper use of English

interrogatives, and the difference between how-possibly? and why-possibly? is less

important, for our purposes, than the difference between how-possibly? and why?.

But that being said I do not think this reformulation of the Santa Claus question

will quite do. There is clearly a difference in emphasis between the two questions,

for the why-possibly? question can always be answered with: “because he can afford

to buy the proper equipment,” while the how-possibly? question, in contrast, seems

to demand that we explain exactly how it is that his equipment is ‘proper’ (or, in a

different context, exactly how he is able to afford it).

5.2.3 The question regarding the source of quantum

speedup

Consider the case in which we would like to explain the fact that a computer has

solved a particular problem. Such an explanation can be given from either of two

points of view: from the ‘software’ point of view, in which the emphasis is placed on

accommodating, what in §5.2.1 we called the recipient of explanation, or from the

‘hardware’ point of view: the point of view we referred to in §5.2.1 as ontic, in

which the emphasis is on accurately describing the state of the object (the

computer). Thus, imagine sitting at a computer terminal and being presented with

the following prompt:

Please input a series of integers:

Upon entering, for instance, 23, 45, 199, and 17, you receive the following message:

Your integers in sorted order are: 17, 23, 45, 199.

What is the explanation for the fact that the computer has given the correct

answer? We may, on the one hand, attempt to answer this question by

reverse-engineering some set of high-level instructions that could have been given to
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�
void s e l e c t i o n S o r t ( int i n t sToSor t [ ] , int l engthOfL i s t ) {

// Declare l i s t i nd i c e s :
int i , j , indexOfLowestNum ;
// For each pos i t i on in the l i s t ,
for ( i = 0 ; i < l engthOfL i s t − 1 ; i++) {

// p r o v i s i o n a l l y a s s e r t t ha t i t po in t s to the lowes t number ,
indexOfLowestNum = i ;
// and then f o r each of the other l i s t po s i t i on s ,
for ( j = l engthOfL i s t − 1 ; j > i ; j−−) {

// i f t he number poin t ed to by i t i s l e s s than the number
// poin t ed to by indexOfLowestNum ,
i f ( i ntsToSor t [ j ] < i n t sToSor t [ indexOfLowestNum ] ) {

// then make t h i s t he new prov i s i ona l miniumum index .
indexOfLowestNum = j ;

}
}
// At the end of the i t h i t e r a t i on , put the number t ha t i s in the
// indexOfLowestNum pos i t i on in to the i t h pos i t i on ( and v i c e versa ) .
swap(&intsToSor t [ i ] , &intsToSor t [ indexOfLowestNum ] ) ;

}
}


� �

Figure 5.1: A set of instructions (in C) implementing the ‘selection sort’ solution to the
problem of sorting a list of given integers. The algorithm first puts the lowest integer into
position 0 of the list, then puts the lowest of the remaining integers into position 1, and so
on.

the computer, as in Figure 5.1. This is not an explanation from the ontic point of

view. Characteristic of the point of view represented by this sort of explanation is

that a solution to a computational problem is described in terms of a series of

high-level black-box (typically function) evaluations.3 No account is taken of the

way in which these instructions are actually implemented in a computer.

From the ontic point of view, on the other hand, one may attempt to explain the

fact that the computer has solved a computational problem by imagining a set of

possible state transitions of the computer. We thus imagine a process by which the

computer begins in an initial state A, undergoes a series of state transformations,

and ends, finally, in a state B, which can then be interpreted as a resolution to the

problem under consideration. Now within the ontic point of view, there are varying

levels of detail which can be employed to produce such an explanation. We can, for

instance, provide a detailed description of the machine-level instructions required to

implement the algorithm. These instructions will be different, according to the

architecture of the computer on which the algorithm has been run. Still within the

ontic point of view, we can descend some levels lower, by describing the detailed

physical implementation of the register and memory locations, the bus, etc., of the

3I am using ‘function’ here in a rather loose sense. I do not mean to exclude, of course,

object-oriented and procedural programming models.
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Figure 5.2: A state diagram representation of a finite state machine. Binary strings of
variable length are input to the automaton. They are ‘accepted’ if the machine is found to
be in the state a after the last character has been read. This particular machine will
accept any string ending in ‘10’.

particular computer on which the algorithm has been run. We can also ascend

higher in the hierarchy of levels. Perhaps the highest point in this hierarchy which

can still be considered as exemplifying the ontic point of view is the level of the

so-called state transition diagram (see, e.g., Figure 5.2). Though abstract, state

transition diagrams can be considered as exemplifying the ontic point of view in

that they purport to describe the essential characteristics of the states and state

transitions associated with a machine capable of implementing the algorithm.

Some explanatory questions effectively admit of only one type of answer. For

instance, if we have been asked to explain the detailed operation of a modern day

computer operating system (i.e., why it is able to perform the operations that it

does), we will typically employ the software point of view. We will, for instance

(though it may take some time) print out and examine the high-level computer

code; or, alternately, if this is judged to be too cumbersome, we may employ even

higher level descriptions: high-level flowcharts, ‘use case’ diagrams, and so on. The

hardware, or ontic, point of view, on the other hand, is usually not employed to

answer questions of this type. It is extraordinarily difficult (though not impossible

in principle for an idealised finite being) to explain the detailed workings of an

operating system using a state transition diagram in which the state of the

computer is kept track of at each computational step. Thus the hardware point of

view is more limited in this respect: above a certain level of complexity it becomes

too difficult to give an explanatory account, from the hardware point of view, of

exactly why a computational process has solved (i.e., what steps were taken by it to

solve) a particular instance of a computational problem.

Yet as we saw in §5.2.2, why? questions of this sort are not the only types of

questions that one may ask in the computational context. In fact there are other
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types of explanatory questions that are also appropriate to ask from the ontic point

of view. Consider, again, the state machine depicted in Figure 5.2. This is an

example of a deterministic finite automaton: a state machine implementing a finite

set of states and deterministic transitions between states. Now, there are, of course,

other types of state machine. For instance, there are nondeterministic finite

automata, deterministic and nondeterministic ‘pushdown’ automata, and

deterministic and nondeterministic Turing machines, to name a few (cf. Martin,

1997). And these are all described essentially in terms of the possible states and

state transitions which they are capable of.

One type of question we can ask, from the ontic point of view, concerns the

characteristics of particular classes of automata. We can ask, for instance, about the

class of problems computable by the machines of a particular class. It turns out that

finite automata are severely limited with respect to the class of problems they are

capable of solving, while Turing machines, in contrast, are capable of solving any

effectively calculable function. As another example, we can ask about the resources

required to solve certain classes of computational problems by automata of a

particular sort. We can ask, for instance, about the class of problems solvable by a

deterministic Turing machine in ‘polynomial time’, those solvable by a

nondeterministic Turing machine in ‘exponential time’, and so on (cf. Appendix A).

In order to answer these and other similar questions, we will appeal to the essential

characteristics of the hardware: to the states and state transitions which can be

realised and which are possible for a particular class of automata, and if we are asked

how is it possible that a particular class of problems is solvable by, for instance, a

nondeterministic Turing machine in polynomial time, we will explain that this is so

because of the state space and state transitions that are possible for the machine.

All of these, and other, questions, are examples of how-possibly? questions.

Let us now come back to the characterisation of quantum computation. The

question, ‘what is the physical source of quantum speedup?’, is a request for ontic

explanation that can be framed as either a why? or a how-possibly? question. In

the former case we can understand it as asking ‘why did this particular quantum

computer solve this computational problem in O(n) steps, as opposed to O(2n)

steps?’ Answering this question will involve describing the actual causal history of

the quantum computer—each individual transition undertaken by it to solve the

computational problem. While such a causal history may be interesting for some

purposes, it does not strike me as the appropriate answer to give to the question

which is actually being asked; for this question, I believe, is more appropriately
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characterised as a how-possibly? question: a request for the structural features of

quantum computers which make it possible for them to outperform classical

computers. And here, just as with the question, ‘why are Turing machines more

powerful than finite automata?’, it is appropriate to answer by appealing to the

state space and state transitions that are possible for a quantum as opposed to a

classical machine.

Now as I explained in detail in §4.4, because of the possibility of quantum

entanglement, n-fold, d-dimensional quantum systems are capable of efficiently

representing the possibilities associated with a dn-dimensional Hilbert space, while

n-fold d-dimensional classical systems are capable of efficiently representing a space

of only d · n dimensions. The quantum computer has exponentially more resources

at its disposal than a classical computer, therefore, which it may use in order to

solve a particular computational problem: there are ‘shortcuts’ through state space,

accessible to a quantum computer, which are inaccessible to classical systems. Thus

I submit that it is the possibility of entanglement—i.e., the fact that compound

states of quantum systems may sometimes transition to entangled states—which is

the explanation for quantum computational speedup (if quantum speedup is, in

fact, possible) from the physical or ontic point of view. As I argued in Chapter 3,

entanglement is necessary for explaining quantum speedup, and as I argued in

Chapter 4, it is sufficient as a resource (if anything is) as well. And as I have just

argued, the states and state transitions made possible by entanglement are sufficient

to explain quantum speedup from the ontic point of view. In the context of physical

theory, ontic explanation just is physical explanation. Thus I claim that this

explanation of quantum speedup is the physical explanation that we have been

seeking.

A higher-level explanation—one that is closer to the level of the recipient of

explanation but still reducible in principle to the physical level—would be desirable

and would serve to illuminate much, for us, about the nature of the physical world.

This is what I take to be the aim of explanations of quantum speedup that appeal,

for instance, to the fact that quantum computers are capable of massively parallel

function evaluation using a single circuit (Duwell, 2004, 2007; Hewitt-Horsman,

2009), or accounts of quantum speedup that explain it as arising from the

manipulation of the correlations between these function evaluations instead of the

results of the evaluations themselves (Steane, 2003), or those which describe

quantum computers as computing the global properties of functions (Bub, 2006,

2010).
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In §5.2.1 I made a distinction between i) properly ontic explanations, ii)

higher-level explanations that are directly translatable (at least in principle) into

ontic language, and finally iii) higher-level explanations that are not so

translatable—what I there called ‘analogical’ explanations. The explanations of

quantum computation just referred to seem to fall within the first subdivision, for in

these explanations, quantum algorithms are usually described by something very

similar to what I have, above, characterised as state transition diagrams. And I

previously described these diagrams as belong to the ontic point of view. When one

interprets the action of the unitary gates employed in quantum algorithms as

implementing function evaluations, however (or perhaps: operations on the

correlations between these evaluations, or perhaps: global properties of functions),

one is, strictly speaking, employing a concept (‘function’) that properly belongs to a

higher-level—the ‘software’-level—of description.

For the case of a classical computer, one can typically translate talk of functions

to talk of their low-level implementation without loss of content. Thus in the

classical case, explanations such as these could still claim to be ontic despite their

added emphasis on the recipient of explanation; i.e., despite being at a level

removed from properly ontic explanation. Thus in the classical case, such

explanations would be classed within the second subdivision. As was made clear in

Chapter 2, however, a description of a quantum state transformation such as

2n−1
∑

x=0

|x〉|0〉 →
2n−1
∑

x=0

|x〉|f(x)〉, (5.1)

should not necessarily be taken at face value. Regarding the state resulting from

such a transformation, one cannot say, for instance, and despite appearances, that

2n evaluations of the function f are therein represented. Reiterating Mermin: “One

cannot say that the result of the calculation is 2n evaluations of f , ... All one can

say is that those evaluations characterize the form of the state that describes the

output of the computation. One knows what the state is only if one already knows

the numerical values of all those 2n evaluations of f .” (2007, p. 38). This is to say

nothing of the existence of alternative models of quantum computation such as the

cluster state model which, as we have seen in Chapter 2, complicate the situation

yet further with respect to the significance of a state such as (5.1).

The project of providing an answer to the question of the explanation for

quantum speedup from a higher-level, but still reducible, point of view is both an

interesting and important one, and I should not be here understood as denying that
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this project may ultimately prove successful. Nor should I be understood as

claiming that all existing attempts at such an explanation must fail. While the

many worlds explanation of quantum speedup, as we saw in Chapter 2, may be

untenable, other high-level explanations of this sort may still succeed. But I hope it

is clear that any explanation from this point of view which is unable to resolve these

interpretational problems must be seen as, at best, analogical in the sense in which I

defined that term above—as belonging to the third subdivision. Of course, even

here, the label ‘analogical’ should not be taken in a derogatory sense; explanations

of this sort have been and are enormously useful for the development of our

fundamental theories. Even if such explanations are not ontic, in the sense in which

I have defined that term above, they undoubtedly illuminate a great deal about the

objects of our investigations.

But regardless of whether such a project has any hope of success, an

investigation of the ‘lower-level’ sort—one undertaken from a point of view that

remains as close to the ‘hardware’ as is both possible and appropriate—will be

useful, both for its own sake and also because it may prove informative for the

higher-level project. It is just such an investigation which I have undertaken here.

5.3 Ontic Why? questions and causal

explanation

Yet there will be those who still remain unsatisfied. They will counter that an

explanation for quantum speedup from the physical point of view has not truly been

given, for I have not answered the question of what entangled quantum states

fundamentally represent; i.e., I have not answered the question of why quantum

systems sometimes become entangled—of what underlying causes give rise to the

observed probabilities for outcomes of experiments and allowed state transitions

associated with entangled states.

The claim that the only appropriate answer to a why? question in the scientific

context is a causal explanation—that we can be said to have explained ‘why X?’

only when we have answered that it is be-cause of Y—is, I believe, unlikely to be

correct for the general case.4 Though it will not be necessary to defend this claim

here, I do believe, for instance, that mathematics is a science, that there are such

4For a time at least (Salmon, 1984), defended such a view, as have Humphreys (1989), and

Ruben (1990).
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things as mathematical explanations, and that the case cannot be made that

mathematical explanations are causal, unless one means by ‘causal’ something very

far removed from its ordinary signification.

The claim that all answers to why? questions must be causal is more plausible,

however, if one restricts one’s attention to physics, or at any rate to physical

processes (such as the quantum computational process). Whether or not one agrees

with this claim, it must be admitted that it is at least not absurd to insist that an

explanatory account of a physical process must include an account of how a

particular kind of state of the process comes about or is caused by the process’s

immediately prior state. And for those who hold such a view, a non-causal physical

explanation is no physical explanation at all.

It is common to view quantum entanglement as essentially arising from the prior

physical interaction of two or more quantum systems (cf. Schrödinger, 1935). From

this point of view, it is possible to give something like a causal or mechanistic

explanation of the possibility of quantum state transitions to entangled states. Such

an explanation can be construed as causal, at least in the minimalistic sense that

quantum entanglement is explained as having determinately arisen from the

physical interactions of physical systems.

Such a view has been challenged, however. According to John Stachel, quantum

entanglement should not most generally be understood as the result of prior

physical interactions. Rather, for Stachel, quantum entanglement should be

understood as the manifestation of the effects consequent upon a set of abstract

requirements for determining the probabilities associated with quantum systems,

while these abstract requirements themselves, according to Stachel, are mechanically

inexplicable and ‘mysterious’. If this is correct, then it will lead us to doubt whether

a causal characterisation of entanglement (and hence a physical explanation for

quantum speedup) is possible.

In the sequel I will argue that Stachel is perfectly correct to maintain that the

statistics associated with entangled quantum systems are characterisable in terms of

a set of abstract requirements. I will also argue, however, that it is possible to

characterise these abstract requirements as themselves arising from physical

interactions, and thus that a causal characterisation of entanglement, at least in this

minimalistic sense, can be given. Thus our explanation of quantum speedup should

not be objectionable to those who insist on the essentially causal nature of physical

explanation (at least as it relates to why? questions such as the ‘why do quantum

systems become entangled?’ question).
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Figure 5.3: Conjunction of two C gates. Internal line labels represent probabilities for
transitions.

5.4 The mystery of self-interference

5.4.1 Interfering quantum gates

A classical gate C which flips its input bit with probability 1/2 (e.g., a very noisy

NOT gate) will have the following transition probabilities:

pC00 = pC01 = pC10 = pC11 = 1/2. Since | 1√
2
|2 = | i√

2
|2 = 1/2, it follows from the Born rule

that a quantum gate Q will yield the same transition probabilities as C if it is

defined to act on a qubit in the following way:

|0〉 Q−→ i√
2
|0〉+ 1√

2
|1〉,

|1〉 Q−→ 1√
2
|0〉+ i√

2
|1〉. (5.2)

Let us now consider the effect of concatenating two instances of C and two

instances of Q, respectively. Transition probabilities for the former (see Figure 5.3)

are:

pC1C2

00 = pC1

00 × pC2

00 + pC1

01 × pC2

10

= pC1C2

01 = pC1

01 × pC2

11 + pC1

00 × pC2

01

= pC1C2

10 = pC1

10 × pC2

00 + pC1

11 × pC2

10

= pC1C2

11 = pC1

10 × pC2

01 + pC1

11 × pC2

11

= 1/4 + 1/4 = 1/2. (5.3)

Transition probabilities for a concatenation of the two quantum gates, on the other
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Figure 5.4: Conjunction of two Q gates. Internal line labels represent probability
amplitudes for transitions.

hand, are:

pQ1Q2

00 = pQ1Q2

11 = 0,

pQ1Q2

01 = pQ1Q2

10 = 1. (5.4)

In other words, these two quantum gates, which by themselves yield equal

probabilities for each of the two possible outcomes, together yield an outcome that

is anti-correlated with the input value with certainty.5 That this is so is evident if

we consider, for example, the action of Q1 and Q2 on a qubit in the initial state |0〉:

|0〉 Q1−→ i√
2
|0〉+ 1√

2
|1〉

Q2−→ i√
2

(

i√
2
|0〉+ 1√

2
|1〉
)

+
1√
2

(

1√
2
|0〉+ i√

2
|1〉
)

. (5.5)

This may be re-expressed as:

(

i√
2
· i√

2
+

1√
2
· 1√

2

)

|0〉+
(

i√
2
· 1√

2
+

i√
2
· 1√

2

)

|1〉. (5.6)

Eq. (5.6) illustrates the fact, visualised in Figure 5.4, that in order to derive the

probability for the outcome of a particular quantum mechanical experiment we

must first calculate the total probability amplitude corresponding to that particular

outcome, by summing the probability amplitudes for all of the possible paths

through the state space of the system which yield that particular result. Some of

5It is no accident that I have chosen to describe the relation between input and output values

in terms of correlations. I do so in order to highlight the affinities between the phenomena of

interference and entanglement that are present even in simple examples such as this. This will be

discussed in more depth in the following sections.



95

these paths may ‘interfere’ with one another. In the current example, the

probability amplitudes for the two possible paths yielding |0〉 are (i/
√
2)2 = −1/2

and (1/
√
2)2 = 1/2. Since these are of opposite sign, they destructively interfere

with one another, yielding, in this case, a total probability amplitude of 0. The

probability amplitudes for the two possible paths which yield |1〉, on the other hand,

constructively interfere to yield a total probability amplitude of i. By the Born rule,

the probability that the result is |1〉 is |i2| = 1. Similarly, the reader can verify that

the action of the combined gate on an initial state of |1〉 will yield an outcome of |0〉
with certainty.

It is worthwhile to note, here, a fact which I did not call explicit attention to in

my earlier exposition of the Deutsch-Jozsa algorithm: recall (cf. §2.2, n. 8.) that

when the function encoded in the unitary transformation is balanced, the amplitude

of |0n〉 in the superposition (2.4) representing the first n qubits, owing to destructive

interference, will be zero. Thus a measurement of these qubits cannot produce the

bit string z = 0, and this fact allows us to distinguish constant functions, which

always yield the bit string z = 0, from balanced functions, which always result in a

bit string z 6= 0. Indeed, based on such considerations, Lance Fortnow has gone so

far as to claim that interference, in this sense, and not entanglement, is the true

source of quantum speedup. We will not have to consider Fortnow’s claim in detail

here (though the interested reader is encouraged to consult Appendix E), for as I

will argue later, in §5.5 and §5.6, entanglement and interference can be considered

as but two sides of one and the same coin.

5.4.2 The two-slit experiment

For Richard Feynman, the phenomenon (introduced in the last section) of

‘self-interference’,6 which we can more abstractly characterise as—a consequence of

the superposition principle—the need to sum the probability amplitudes over all of

the possible paths through a system’s state space, “has in it the heart of quantum

mechanics. In reality, it contains the only mystery” (Feynman et al., 1964, vol. 3,

1-1). What makes this phenomenon so mysterious is the fact that classically,

interference is typically associated exclusively with wave propagation, but many of

the objects which exhibit interference effects in quantum mechanics also exhibit

characteristically particle-like effects.

6Though in the context of his discussion, Feynman only mentions electron self-interference, I

believe we can charitably take him to be be referring to quantum self-interference in general.
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Figure 5.5: A two-slit experiment with, left: a classical wave source, and right: a
classical particle emitter.

Consider, for instance, an experimental setup consisting of a classical wave

source, a diaphragm into which two openings have been cut, and a movable (in the

vertical direction) detector, arranged as in Figure 5.5. The detector measures the

intensity of the wave motion at that location. We find that in general this intensity

can take on a continuous range of values whose distribution for different positions of

the detector reflects the constructive and destructive interference of the waves

emanating from the apertures. Consider, on the other hand, a similarly arranged

experimental setup with, in lieu of a classical wave source, a classical particle

emitter (also depicted in Figure 5.5), which emits, one at a time, particles of

identical shape and size in random directions. Since the particles are fired from the

gun one at a time we will of course find no interference effects. As for the detector,

it will either detect a particle or it will not, thus the distribution of intensity values

will decidedly not be continuous.

When we come to perform similarly arranged experiments with quantum

objects, however, things begin to get more puzzling. For instance, suppose that,

analogously to our experiment with the classical particle emitter, we set up an

experimental apparatus consisting of a diaphragm with two apertures, a movable

detector, and an electron gun. In this case we find that, on the one hand, as we

would expect on the assumption that electrons are particles, they arrive at the

detector one at a time and are registered with equal intensity. On the other hand,

the probability that an electron will arrive at any given position on the back wall is

distributed analogously to the intensity distribution for a classical wave—i.e., the

probability distribution displays interference effects, as we saw in our comparison of

classical and quantum computer gates above. Quantum objects like electrons,

therefore, manifest both particle and wave effects.

This is extremely counter-intuitive. It is difficult if not impossible to imagine
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how particles, shot one at a time through a slitted diaphragm can interfere with one

another. For Feynman, this phenomenon is simply a brute fact—one which “is

impossible, absolutely impossible, to explain in any classical way” (1964, vol. 3, 1-1).

It is possible, of course, to account for these statistics by appealing to the formal

requirement of which Eq. (5.6) is an example; however, Feynman does not consider

such an account to be explanatory; for him it is only an account: “We cannot make

the mystery [of self-interference] go away by ‘explaining’ how it works. We will just

tell you how it works” (1964, vol. 3, 1-1). For Feynman, what is missing from such

an account is precisely a causal or mechanistic description of the process by which

self-interference phenomena arise. Feynman is of the opinion that explanations of

physical phenomena should account for the mechanisms that give rise to

them—something which he adamantly believes cannot be done in the case of

self-interference phenomena:7

One might still like to ask: “How does it work? What is the machinery

behind the law?” No one has found any machinery behind the law. No

one can “explain” any more than we have just “explained.” No one will

give you any deeper representation of the situation. We have no ideas

about a more basic mechanism from which these results can be deduced

(1964, vol. 3, 1-10).

5.5 Accounting for correlations in EPRB

composite systems8

Consider two fermions (spin-1/2 systems) initially brought into interaction with one

another to form a composite system with zero total spin in every direction. The

system is said to be in the ‘singlet state’.9 Since fermions may only take on spin

values of ±1/2, this requires that the spins of the individual subsystems be

7I should note that implicit in this is a denial, by Feynman, of the possibility that a classical

description can associate a wave with a single particle. This presupposition is denied by

proponents of the de Broglie-Bohm interpretation.
8An EPRB system is a system analogous to that utilised in the gedankenexperiment of

Einstein, Podolsky, & Rosen (1935), which was designed to demonstrate the incompleteness of the

standard quantum mechanical state description. The ‘B’ is for Bohm, whose conceptually

streamlined version (1951) of the gedankenexperiment will be the one referred to in the remainder

of this chapter.
9This is the Bell state |Ψ−〉 from Eq. (3.1).
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oppositely correlated with one another; i.e., the only possibilities for their respective

spins are: (a) 1/2,−1/2; (b) −1/2, 1/2. Conservation of angular momentum

dictates that as long as there are no further interactions, the subsystems must

maintain their correlation with one another even if, after some elapsed time, they

become spatially separated. In particular, if we perform, for instance, a σz

experiment on one subsystem and receive a positive result, then a σz experiment on

the second subsystem must yield a negative result with certainty, and vice versa.

This will be the case regardless of the orientation of the experimental device; i.e., we

have the following relation for the expectation value of experiments on the joint

system for any direction m̂:

〈σm ⊗ σm〉 = −1. (5.7)

On the other hand, if we perform a σz experiment on the first system and a σx

experiment on the second we will find no correlation between the respective results.

In general, for unit vectors m̂, n̂:

〈σm ⊗ σn〉 = −m̂ · n̂, (5.8)

where the scalar product m̂ · n̂ ≡ ‖m‖‖n‖cosθ = cosθ for unit vectors m̂, n̂. States

such as the singlet state are examples of entangled states. As we have already

discussed (§3.2.1, §4.3), there is no local hidden variables theory which can

reproduce all of the predictions of quantum mechanics for states such as these.

Physically, entanglement is usually given a characterisation essentially similar to

the one I have just given; i.e., when two (or more) quantum systems, existing

independently of one another in different parts of space, are brought into temporary

physical interaction to form a composite system, then if after a time the subsystems

become spatially separated once again, it may happen that as a result of their

interaction, probabilities for outcomes of experiments on the individual subsystems

are no longer independent of one another.10 Once entered into, this situation will

persist indefinitely and will only cease when the subsystems undergo further

interactions with other (external) systems.

10Compare: “When two systems, of which we know the states by their respective

representatives, enter into temporary physical interaction due to known forces between them, and

when after a time of mutual influence the systems separate again, then they can no longer be

described in the same way as before, viz. by endowing each of them with a representative of its

own” (Schrödinger, 1935, 555).
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Key in the foregoing account are the ideas of spatially distinct quantum systems

and of the physical interactions between them. Yet spatially separated ensembles

are not the only quantum systems to display statistical dependence. The two-slit

experiment with electrons, which we considered in §5.4.2, for instance, can be

thought of as a series of experiments on a collection of identically prepared quantum

systems which together comprise a temporally separated ensemble.

As we saw, the results of experiments on such systems may display statistical

correlations with one another, which we normally conceive of as arising from

self-interference. Self-interference, meanwhile, is typically considered to be an aspect

of quantum mechanics that is fundamentally distinct from whatever gives rise to the

statistical correlations observed in EPRB experiments (these, as we have just seen,

are usually conceived of as being due to the physical interaction between spatially

distinct subsystems).

According to John Stachel, however, quantum entanglement just is a species of

statistical dependence, and is exhibited by both of these phenomena. Stachel

attributes no special significance, in particular, to physical interactions between

quantum systems: “Rather than a physical interaction, it is precisely the quantum

entanglement of their members—non-interacting or interacting—that distinguishes

quantum from classical ensembles” (1997, 246).

Ultimately, for Stachel, the statistical dependence observed in both cases is due

to the requirement, illustrated by Eq. (5.6), that probability amplitudes for all of

the possible paths through a system’s state space be summed in order to derive the

probabilities for outcomes of experiments on that system. Let us call the collection

of rules that encapsulate this requirement the ‘Feynman rules’ for short.11 We saw

an example of how to apply these rules to single systems in §5.4.1. As for EPRB
(and similar) systems composed of more than one subsystem, Stachel argues that

one can think of experiments on such systems as composed of two steps. The first

step, consisting of an experiment on the first subsystem, yields a non-maximal

experimental outcome for the system as a whole. It is followed by an experiment on

the second subsystem, which together with the first experiment can be considered as

yielding a maximal experimental outcome for the total system. Given such a

description of the experiment, Feynman’s rules can be shown to correctly account

11Specifically, they are: the Born rule, the quantum law of superposition of amplitudes, the

classical law for addition of probabilities, the quantum law of multiplication of amplitudes, and the

classical law of multiplication of probabilities (Stachel, 1986, §5.5).
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for the observed statistics.12

5.6 Accounting for the Feynman rules

5.6.1 Physical interactions

In the last section we saw that it is possible to characterise the statistics manifested

by EPRB-type composite systems as stemming from the need to sum the

probability amplitudes for all of the paths a system may take through its state

space (i.e., from Feynman’s rules). From this, Stachel has concluded that

EPRB-type effects, usually taken as a paradigm example of the effects consequent

upon physically interacting quantum systems, are in reality just consequences of

Feynman’s rules. The requirement expressed by Feynman’s rules, in fact, for Stachel

(just as for Feynman himself) is the true and only quantum mystery.

This would seem to undercut my claim that the explanation of quantum speedup

I have given above can be construed in a causal way. But before we accept this

conclusion, let us see if something rather more subtle may be at work. In particular,

let us determine whether it is possible to characterise the requirements expressed by

Feynman’s rules as themselves stemming from physical interactions of some sort. If

we could show this, we might then conclude that characterising quantum systems in

terms of the requirements imposed by Feynman’s rules, on the one hand, and in

terms of physical interactions, on the other, are merely two different ways of

regarding one and the same quantum mystery. Those with a predilection for

causal-mechanical descriptions, of course, will prefer the latter.

12Lüders’ rule (cf. Bub, 1977),

ρ→ ρ′ =
Pai

ρPai

tr(Pai
ρPai

)
,

an alternative form of the von Neumann projection postulate applicable to non-maximal

experiments, gives us the updated state of a system consequent upon a possibly non-maximal

projective measurement of some observable A yielding the experimental outcome ai. We can use

Lüders rule to obtain the correct probabilities for maximal experimental outcomes conditional

upon non-maximal experimental outcomes, and Lüders rule can be shown to follow from

Feynman’s rules (Stachel, 1986, 331-333). Note that Lüders rule is a special case (for projection

operators) of the more general measurement rule

ρ→ ρ′ =
Mαi

ρM †
αi

tr(Mαi
ρM †

αi
)
,

where M is in general not a projection operator (cf. Nielsen & Chuang, 2000, §2.4.2).
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In fact, we can provide such a characterisation if we focus on the system’s

interaction with the state preparation device. In particular, the common source of

fermions in the EPRB experiment may be taken to represent a physical source for

the entanglement present in a system in (for instance) one of the Bell states—a

physical source, moreover, that is in the common causal past of both subsystems.

That is all well and good for an experimental setup such as the EPRB. But, one

might object, if we are to answer Stachel’s challenge we must provide a physical

source for the entanglement present in temporal ensembles as well as in spatial

ensembles, for the entanglement present in single particle experiments as well as in

the EPRB-type experiments.

The following consideration should allay this concern. Imagine a spin-1/2 particle

that has been sent through a Stern-Gerlach apparatus oriented in the ẑ direction

(see Figure 5.6). Once it has passed through the apparatus, there is, henceforward,

an important sense in which only joint experiments on the system are possible, for

now an experiment to determine whether the particle occupies a particular spatial

region is implicitly also an experiment to determine whether the particle is in a

complementary spatial region. For supposing that the effect of the magnet is that

the particle is now in a superposition of being in the spatial regions occupied by the

z+ and z− detectors. Then in that case the combined state of the two spatial

regions will be expressible in the occupation number formalism (cf. Mattuck, 1976,

Ch. 7) as follows:

|ψ〉 = a|1〉z+|0〉z− + b|0〉z+|1〉z−. (5.9)

Here, |1〉α signifies that one particle occupies the spatial region inhabited by the α

detector, while |0〉α signifies that no particles occupy the spatial region inhabited by

the α detector. Eq. (5.9) expresses the fact that if we perform a σz experiment on ψ

and detect a particle at the z+ detector, then we cannot also detect a particle at

the z− detector, and vice versa. Thus we can think of the statistics associated with

a single particle as, from another point of view, the statistics associated with an

entangled state of two spatial regions,13 where this entangled state has been brought

13It is worth noting that the situation described here is essentially similar to the situation

described by Einstein in the argument for the incompleteness of quantum mechanics which he gave

at the Solvay Congress of 1927 (cf. Jammer, 1974, 115-121), and also to the situation described in

his letter to Schrödinger of 19 June, 1935. Norsen (2005) has argued that this argument is in fact a

conceptually simpler and superior version of the more well-known EPR argument. The EPR

argument figures prominently, of course, in almost all discussions of entanglement. For more on



102

Figure 5.6: A Stern-Gerlach-like experimental setup (implementing a σz experiment) in
which a two-dimensional quantum system is sent through a state preparation device, after
which it impinges on one of two detectors.

about via the influence of the Stern-Gerlach apparatus, which we can think of as

representing “an influence on the very conditions which define the possible types of

predictions regarding the future behaviour of the system” (Bohr, 1935, 700).14 In

this vein one recalls Shimony: “It must be emphasized that the concept of

entanglement is inseparable from the role of potentiality in quantum mechanics”

(Shimony, 1993, 142-143). In an entangled state such as (5.9), Shimony writes, the

two observables involved are “... merely potential, but in an interlocked manner”

(ibid.).

Considering the state of a system from varying points of view is all very well,

one might interject at this point, but the proof is in the pudding: do such states

manifest detectable correlations between their subsystems? The, perhaps surprising,

answer seems to be yes; the state of a single system, such as a photon, can give rise

to EPRB-type correlations that are detectable in principle by experiment. This was,

in fact, illustrated with a gedankenexperiment, some time ago, by Lucien Hardy

(1994). We will consider this gedankenexperiment in the next section.

5.6.2 Entanglement of a single photon

Hardy’s thought experiment consists of three 50:50 beam splitters15 each

implementing the following state transformations, expressed in the occupation

this topic, see Shimony (2005); Norton (2011).
14This entire passage is emphasised in the original, thus there is no harm in not reproducing the

emphasis, as I have done here.
15The experiment is conducted with photons, which unlike the spin-1/2 qubits we considered in

the previous section, are spin-1 systems. The difference is inessential.
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Figure 5.7: The experimental setup for Hardy’s gedankenexperiment. A photon in the
state q|0〉+ r|1〉 is incident on the s mode; the vacuum state is incident on the t mode;
|α1〉 and |α2〉 are incident on the a1 and a2 modes, respectively. Source: Hardy (1994).

number formalism as:

|0〉a|0〉b → |0〉c|0〉d, (5.10)

|0〉a|1〉b →
1√
2
(|0〉c|1|〉d + i|1〉c|0〉d), (5.11)

|1〉a|0〉b →
1√
2
(i|0〉c|1|〉d + |1〉c|0〉d). (5.12)

Here a, b are the input and c, d are the output modes, and it is assumed for

simplicity that the a mode is transmitted into the c mode and likewise for b and d.

A photon, prepared in the state q|0〉s + r|1〉s, is directed at the s input of one of the

beam splitters (see Figure 5.7), while the input to t is the vacuum state |0〉t. The
outputs of this splitter, u1 and u2, are fed as inputs to two further beam splitters,

where they are each mixed with the coherent states |α1〉a1 and |α2〉a2 . The outputs

of these beam splitters, c1, d1, c2, d2 are then fed to photon number detectors,

C1, D1, C2, D2. Additionally, two more detectors, U1, U2, may be optionally inserted

into the paths u1, u2, respectively.

It turns out that (cf. Hardy, 1994) when neither U1 nor U2 are removed from

paths u1 and u2, it is impossible for both U1 and U2 to register a photon; writing

Xi = n to indicate that n photons were detected at detector Xi, we have:

U1 = 1 and U2 = 1 never happens. (5.13)
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When U1 is removed, we have the result that:

if F1 = 1 then U2 = 1, (5.14)

where we have written F1 = 1 as shorthand for C1 = 0, D1 = 1. Similarly, when U2

is removed:

if F2 = 1 then U1 = 1, (5.15)

where F2 = 1 is shorthand for C2 = 0, D2 = 1. When U1 and U2 are both removed,

we find that

F1 = 1 and F2 = 1 happens sometimes. (5.16)

To appreciate the significance of these results, imagine that Alice and Bob are at

ends 1 and 2 respectively, and suppose that Alice chooses to perform experiment F1

and Bob chooses to perform experiment F2. Further suppose that these yield

F1 = 1, F2 = 1. Alice can deduce from F1 = 1 and (5.14) that the photon from the

source would have been detected in u2 if Bob had placed U2 there. From F2 = 1 and

(5.15), Bob can deduce that the photon from the source would have been detected

in u1 if the detector U1 had been placed there by Alice. They cannot both be

correct, however, for only one photon has been emitted from the source; i.e., (5.13)

will then be violated.

According to Hardy, it is possible to avoid this contradiction if we are willing to

drop the assumption of locality :16

... there is an implicit assumption of locality in this reasoning, and ...

without this assumption there is no contradiction. Alice obtains F1 = 1.

Bob is actually measuring F2. Alice might deduce from her result and

the prediction [(5.14)] that had Bob measured U2 instead he would have

gotten U2 = 1. However, without assuming locality, this deduction is

16 Hardy’s interpretation of these results, when first published, were quite controversial (cf.

Vaidman 1995; Greenberger, Horne, & Zeilenger 1995; Hardy 1995). Since then, an improved, and

less controversial, version of Hardy’s experiment has been proposed which is both feasible and

capable of demonstrating Bell-inequality-violations (cf. Dunningham & Vedral 2007; Terra Cunha

et al. 2007). I have limited myself here to an exposition of Hardy’s original scheme as it is

conceptually simpler, while the differences between the various versions are inessential to the point

I am making.
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wrong, because if Bob had decided to measure U2 instead, there might

then have been a nonlocal influence from Bob’s end to Alice’s end

(Hardy, 1994, 2281-2282).

Let us forego evaluating Hardy’s interpretation of the significance of this

experiment (specifically, his attribution of nonlocality to the effects manifested by

the experiment). It is enough to note that, irrespective of whether we interpret

these effects as nonlocal, the Hardy gedankenexperiment manifests effects which we

would normally associate with physically interacting multi-particle systems. The

experiment thus illustrates, in a concrete manner, that the quantum superposition

of a single system can also be thought of in terms of the correlations consequent

upon its physical interactions with an experimental device.17 In this vein,

Dunningham & Vedral (2007, 1) conclude:

Feynman once famously claimed that superposition is the only mystery

in quantum mechanics. Others would add nonlocality to the list. If,

however, single particles can exhibit nonlocality, then these two

mysteries become one and the same.

Entanglement represents a real physical feature of quantum systems, whether or

not we maintain that we should require of such physical features that they be

explicable in terms of the physical interactions of systems. An explanation of

quantum speedup, therefore, according to which it is entanglement which makes it

possible for quantum systems to outperform their classical counterparts, is a

physical explanation of quantum speedup on a reasonable interpretation of what it

means for an explanation to be physical.

17As was explained previously, one can think of the entanglement effects that are manifested by

the subsystems of single particle systems as arising from the interaction of the system in question

with a state preparation device in the common causal past of its subsystems. In the Hardy

experiment, the vacuum state incident on the t mode of the first beam splitter comprises part of

the experimental setup, yet it seems strange to interpret the vacuum as part of the cause of the

correlations subsequently manifested by the experiment. This should not be controversial,

however, as long as we remember that we are not dealing, in this experiment, with a naturally

occurring vacuum, but rather with a vacuum that has been specifically prepared by a laboratory

technician (by, for instance, physically placing a screen in front of this part of the apparatus).

While vacuums do occur (rarely) in nature we do not, at least at this point, have any capability to

use them for the purposes of experiment. Vacuums must be created in order to be used in this

way, thus this state preparation may be interpreted as a part of the cause of the correlations

manifested in the Hardy thought experiment, in the manner outlined in the previous section. I

thank Wayne Myrvold for this point.
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Chapter 6

Summary and Conclusion

In Chapter 2 I began this dissertation by considering the most popular of the

candidate physical explanations for quantum speedup: the so-called many worlds

explanation of quantum computation. I argued that, although it is inspired by the

neo-Everettian interpretation of quantum mechanics, unlike the latter it does not

have the conceptual resources required to overcome the preferred basis objection. I

also argued that the many worlds explanation, at best, can serve as a good

description of the physical process which takes place in network-based computation,

but that it is incompatible in an important sense with other models of computation

such as cluster state quantum computing. I next considered, in Chapter 3, a

common component of most other candidate explanations of quantum speedup:

quantum entanglement. I investigated whether entanglement can be said to be a

necessary component of any explanation for quantum speedup, and I considered two

major purported counter-examples to this claim. I argued that neither of these, in

fact, show that entanglement is unnecessary for speedup, and that, on the contrary,

we should conclude that it is. In Chapters 4 and 5 I then asked whether

entanglement can be said to be sufficient as well. In Chapter 4 I argued that despite

a result that seems to indicate the contrary, entanglement, considered as a resource,

can be seen as sufficient to enable quantum speedup. Finally, in Chapter 5 I argued

that entanglement is sufficient to explain quantum speedup.

In this dissertation I have neither proved any original theorems, nor provided any

new experimental results. Rather, my conclusions are the result of an investigation

and analysis of the valuable scientific contributions which have already been made.

As compared to these, my own contribution is slight. But I hope that the reader

agrees that it is not unimportant—that even if, for all of my efforts, my conclusions

are in fact incorrect, that there has been some clarification of the underlying issues,
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with the hoped-for result that there will, in the not too distant future, be new

theorems and new results in the directions pointed to by this dissertation.

In his closing remarks to the Logical Syntax of Language, Carnap wrote of a

vision of “fruitful co-operative work on the part of the various investigators working

on the same problems—work fruitful for the individual questions of the logic of

science, for the scientific domain which is being investigated, and for science as a

whole.” For ‘logic of science’ I would put, in its place, ‘philosophy of science’. But I

wholeheartedly agree with the spirit of these words. And it is my sincere hope that

this dissertation makes some approximation to this so eloquently expressed ideal.
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Appendix A

Computational complexity theory

Alan Turing (1937; 1938) inaugurated the field of Computer Science by arguing

persuasively for the equivalence of the class of computable, or ‘effectively calculable’

functions with the class of problems computable by a Turing machine. The

statement of this equivalence is known as the Church-Turing thesis, and it is the

fundamental principle of computer science. In its early period, research in computer

science was focused primarily on the question of computability; i.e., on the question

of whether a given problem is or is not computable by Turing machine. More

recently, another focus of research has emerged: the field known as Computational

Complexity Theory. This field is dedicated to the more practical question

concerning the cost of solving a given computational problem.

A basic distinction, in Complexity Theory, is between those computational

problems that are amenable to an efficient solution in terms of time and/or space

resources, and those that are not. Easy (or ‘tractable’, ‘feasible’, ‘efficiently

solvable’, etc.) problems are those for which solutions exist which involve resources

bounded by a polynomial in the input size, n. Hard problems are those which are

not easy, i.e., they are those whose solution requires resources that are ‘exponential’

in n, i.e., that grow faster than any polynomial in n (Nielsen & Chuang, 2000, p.

139).1

For example, a problem, which for input size n, requires ≈ nc steps to solve

(where c is some constant) is polynomial in terms of time resources in n and thus

tractable according to our definition. A problem that requires ≈ cn steps to solve,

on the other hand, is exponential in terms of time resources in n and is therefore

intractable according to our definition. The definition is a coarse one, and its

1The term ‘exponential’ is being used rather loosely here. Functions such as nlogn are called

‘exponential’ but do not grow as fast as a true exponential such as 2n.
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usefulness will depend, in a given case, on the values of c and n. Nevertheless it is

adequate for most cases of practical interest.

An important theoretical reason for adopting the definition is the following

principle, usually referred to as the ‘Strong’ Church-Turing thesis in the literature.

In order not to confuse this thesis with the more fundamental (‘weak’)

Church-Turing thesis that I mentioned earlier, I will refer to it as the Computational

Efficiency Thesis (CET), which states that:

Any model of computation can be simulated on a probabilistic Turing

machine with at most a polynomial increase in the number of elementary

operations required (Nielsen & Chuang, 2000, p. 140).2

If, now, we identify easy problems with those having polynomial resource

solutions, then CET tells us that in our analysis of computational complexity, we

can restrict our attention to the probabilistic Turing machine model of computation

(Nielsen & Chuang, 2000, p. 140). Our definition of an easy problem, coupled with

the CET, thus provides us with an elegant, model-independent theory of

computational complexity. But note that while CET is what gives computational

complexity theory its elegant model-independent character, and that without it

“computational concepts and even computational kinds such as ‘an efficient

algorithm’ or ‘the class NP’ will become machine-dependent, and recourse to

‘hardware’ will become inevitable in any analysis of the notion of computational

complexity” (Hagar, 2007, p. 245), it is not a foundational principle to the field of

computational complexity theory in the same way that the Church-Turing thesis is

to computer science.3

Problems that are decidable in polynomial time by a deterministic Turing

machine are said to be in the complexity class PTIME, usually referred to simply

as P. Problems for which a deterministic Turing machine can verify whether a given

solution is, in fact, a solution are said to be in the complexity class NP.4 For

2A probabilistic Turing machine is one for which transitions between states are chosen from a

set according to some probability distribution, rather than assigned deterministically.
3See, for example, Lance Fortnow’s blog entry (2006): “By no means does computational

complexity “rest upon” a strong Church-Turing thesis. The goals of computational complexity is

[sic.] to consider different notions of efficient computation and compare the relative strengths of

these models. Quantum computing does not break the computational complexity paradigm but

rather fits nicely within it.”
4This stands for “nondeterministic polynomial time,” as it can be equivalently defined as the

class of problems solvable in polynomial time by a nondeterministic Turing machine.
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example, consider a language L = {10, 11, 101, 111, 1011, ...} over the alphabet

Σ = {0, 1}, the set of binary digits. L is the set of binary representations of prime

numbers. If it is possible for a deterministic Turing machine to decide, using only

polynomial time resources, whether an arbitrary binary input string is in the

language (i.e., whether it is a prime number), we say the problem is in P. If, on the

other hand, one is given a string in the language at the outset, then if it is possible

for a deterministic Turing machine to verify, in polynomial time, that the string is,

in fact, in the language, then the problem is said to be in NP.

A long-standing question in complexity theory is the nature of the relationship

between P and NP. P is clearly a subset of NP. If it can be decided in polynomial

time whether an arbitrary string is a member of L, then, trivially, it can be decided

in polynomial time whether a member of L is a member of L. It is strongly

suspected that P is a proper subset of NP, however this has not yet been proven.

This is known as the P 6= NP problem in complexity theory.

An important notion in complexity theory is reducibility. Intuitively, problem B

is reducible to problem A if, with no more than polynomial overhead, we can

convert an algorithm for deciding B into an algorithm for deciding A. In other

words, B is reducible to A if a solution for A can be used to solve B. Reducibility

leads us to our next important complexity class, NP-complete. A problem, C, is

called NP-complete if C is in NP and every other problem in NP is reducible (in

polynomial time) to C. The concept of an NP-complete problem is important for

the resolution of the P 6= NP problem, for if it can be shown that an NP-complete

problem is solvable in polynomial time by a deterministic Turing machine (i.e., if it

can be shown that it is in P), then it follows that all other problems in NP are also

in P, and hence that P = NP.

Besides P and NP, the two most relevant complexity classes with respect to

quantum computation are BPP and BQP. BPP stands for bounded-error

probabilistic time. A problem, A, is in BPP if there is a (classical) probabilistic

Turing machine that will accept a string x with probability 1/2 ≤ k ≤ 1 if x ∈ L

(the language representing A) and reject it with probability 1/2 ≤ k ≤ 1 if x /∈ L

(Nielsen & Chuang, 2000, p. 152-153). The quantum analogue of BPP is BQP

(bounded error quantum polynomial time), the set of problems such that a quantum

computer will accept x with probability 1/2 ≤ k ≤ 1 if x ∈ L and reject x with

probability 1/2 ≤ k ≤ 1 if x /∈ L (Nielsen & Chuang, 2000, pp. 200-202). BPP ⊆
BQP since a quantum computer can efficiently simulate a classical probabilistic

Turing machine (Nielsen & Chuang 2000, p. 30; Hagar 2007, p. 240). However, it is



112

not clear whether BQP 6= BPP.

It is important to note that proving BQP 6= BPP amounts to proving that

quantum computers are more powerful than classical computers; but while it is

strongly suspected that BQP 6= BPP, this question has not yet been resolved.

Factoring, the most famous problem for which a quantum algorithm has been

developed, has not been proven to be outside P. Thus solving the factoring problem

does not show us that P 6= BQP, let alone that BPP 6= BQP. Note also that as of

yet no quantum algorithm has been developed which can efficiently solve a problem

inside the class NP-complete, and the relation between NP and BQP is still

unknown.

For more on computational complexity, see: Papadimitriou (1994), Nielsen &

Chuang (2000), Aaronson (2012).
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Appendix B

Information Theory

B.1 Shannon entropy

The birth and development of classical information theory is due, in large part, to

the pioneering work of Claude Shannon. In his seminal article, “A Mathematical

Theory of Communication” (1948), Shannon introduced the scientific community to

the fundamental information-theoretic concept of entropy. Entropy is a measure of

the information one gains when one comes to know the value of a random variable.

Equivalently, it can be thought of as the uncertainty associated with a random

variable; e.g., a message produced by an information source. We define the Shannon

entropy, H , with respect to the random variable x, as:

H(x) = −K
n
∑

i=1

p(xi) log p(xi), (B.1)

where K is a positive constant (amounting to a choice of unit measure) normally

chosen to be 1 (Shannon, 1948, p. 11), 0 log 0 is conventionally defined to be 0, and

p(xi) refers to the probability of receiving message i, given a set of n possible

messages. The log is typically taken to base 2. For example, suppose an information

source transmits sequences of binary digits with the probabilities of the next digit in

the sequence being a 0 or a 1, 1/3 and 2/3, respectively. In this case our uncertainty

with respect to the next bit, or our entropy, is

−(1/3× log 1/3 + 2/3× log 2/3) = 0.92.

Considered as a measure of our uncertainty with respect to the messages

produced by an information source, we should expect H to be 0 if we are certain of

the result, i.e., if one of the p(xi) = 1. It is easily verified that this is the case. We
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should also expect H to be at a maximum when the bits are received with equal

probability, for this is the situation in which we are most uncertain of the result.

This is also easily verified (cf. Shannon, 1948, p. 11).

The joint entropy of two random events, x and y is the total uncertainty

associated with x and y. To determine it one must take into account the

probabilities of all possible combinations of values for x and y. Thus,

H(x, y) = −
∑

i,j

p(xi, yj) log p(xi, yj). (B.2)

Here, p(xi, yj) refers to the probability that message xi and yj occur together.

Note that it can be shown that H(x, y) ≤ H(x) +H(y), with equality only if the

events xi and yj are independent. This is called subadditivity (intuitively, the total

uncertainty associated with x and y is equal to the sum of the uncertainties of x and

y unless they share information in common). Strong subadditivity,

H(x, y, z) ≤ H(x, y) +H(y, z)−H(y), also holds for the Shannon entropy.1

The conditional entropy of x with respect to y,

H(x|y) = H(x, y)−H(y), (B.3)

is the total uncertainty associated with x and y minus the uncertainty that

disappears once we come to know y.

The information shared in common between x and y, or mutual information of x

and y is defined as

H(x : y) = H(x) +H(y)−H(x, y). (B.4)

This definition is easily grasped if one expresses the equation in terms of the joint

information, i.e., H(x, y) = H(x) +H(y)−H(x : y), which is the total information

gain associated with x and y minus the information shared in common (to avoid

double counting) (Nielsen & Chuang, 2000, p. 506).

1We subtract H(y) from the RHS since the uncertainty associated with y is common to H(x, y)

and H(y, z).
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B.2 Von Neumann entropy

The von Neumann entropy plays the same role in quantum information theory as

the Shannon entropy plays in classical information theory. It is defined as

S(ρ) = −tr(ρ log ρ), (B.5)

for a quantum system represented by the density matrix, ρ. As before, by

convention, 0 log 0 ≡ 0. Since the trace of a matrix A is equal to the sum of its

eigenvalues; i.e., since tr(A) =
∑

λi; the von Neumann entropy can be more usefully

expressed as

S(ρ) = −
∑

x

λx log λx (B.6)

where λx are the eigenvalues of ρ.

The joint entropy of a state with two components A and B is defined as

S(A,B) = −tr(ρAB log(ρAB)), (B.7)

where ρAB is the density matrix of the composite system AB (Nielsen & Chuang,

2000, p. 514).

Conditional entropy and mutual information are defined analogously to their

classical counterparts. The conditional entropy is given by

S(A|B) = S(A,B)− S(B). (B.8)

The mutual information is given by

S(A : B) = S(A) + S(B)− S(A,B). (B.9)

There are interesting disanalogies between the von Neumann and the Shannon

entropy. For instance, the inequality S(A) ≤ S(A,B) does not hold in quantum

information theory, as it does for the classical case. In the classical case it is

intuitively obvious that the uncertainty associated with the state of one random

variable cannot be more than the uncertainty associated with the joint state of two.

But in the quantum case, this relation will fail to hold, for instance, in the case

where we have a maximally entangled state of two subsystems. In this case, the

joint state of the two systems is pure, and hence S(A,B) = 0, but the marginals are
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completely mixed and thus S(A) = S(B) = 1. One other disanalogy, between the

classical and quantum versions of mutual information, is discussed in greater detail

in Chapter 3.
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Appendix C

Quantum teleportation

One of the most well-known applications of entanglement in quantum information

processing is as a resource in the so-called teleportation protocol (cf. Nielsen &

Chuang, 2000; Mermin, 2007).1 Consider Alice and Bob, two spatially separated

experimenters, who have the ability to send classical information to one another

(e.g., Alice may call Bob on the telephone, send him an email, and so on). Imagine

that Alice would like to send the state (which she does not know) of some arbitrary

qubit, |ψ〉 = α|0〉+ β|1〉, to Bob. Classically, this seems like a very difficult task, for

even if Alice knows the state of the qubit, she seems, in principle, to require an

infinite amount of classical information to describe it precisely, for the state of a

qubit will in general take on a continuum of values.2

But suppose that Alice and Bob are given one extra resource: suppose that the

Bell state |Φ+〉 is generated, and that one half of the Bell pair is given to Bob and

the other half to Alice. Alice may now proceed as follows. First, she interacts the

qubit represented by |ψ〉, whose state she wishes to send to Bob, with the Bell pair;

i.e.,

|ψ〉a|Φ+〉ab =
1√
2
[α|0〉a(|00〉+ |11〉)ab + β|1〉a(|00〉+ |11〉)ab],

where a and b indicate whether the qubits are in Alice’s or Bob’s possession. Alice

1The quantum teleportation protocol originally appeared in Bennett et al. (1993). The name

‘teleportation’ is something of a misnomer. To a layperson, teleportation usually brings to mind

the idea of physically transporting objects around, possibly instantaneously. Quantum

teleportation, however, is a protocol for transferring information, not physical objects, and the

speed at which information is transferred, since it involves the exchange of a classical signal, is

limited by the speed of light.
2It turns out that this claim is actually false. Surprisingly, the teleportation protocol has been

shown to be efficiently simulable classically. This is explained in Chapter 4.
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then applies a controlled-not (CNOT) operation to the qubits in her possession,

using the qubit represented by |ψ〉 as the control and her member of the Bell pair as

the target qubit. This results in:

1√
2
[α|0〉a(|00〉+ |11〉)ab + β|1〉a(|10〉+ |01〉)ab].

Now Alice sends the qubit represented by |ψ〉 through a Hadamard gate,3 which

results in:

1

2
[α(|0〉+ |1〉)a(|00〉+ |11〉)ab + β(|0〉 − |1〉)a(|10〉+ |01〉)ab]

=
1

2
[|00〉aa(α|0〉+ β|1〉)b + |01〉aa(α|1〉+ β|0〉)b

+ |10〉aa(α|0〉 − β|1〉)b + |11〉aa(α|1〉 − β|0〉)b].

In the next step, Alice measures her two qubits. This will yield one of four

possible measurement results (00, 01, 10, 11), and Bob’s qubit will correspondingly

be in one of the following four states:

00 : |ψ〉b ≡ (α|0〉+ β|1〉)b
01 : |ψ′〉b ≡ (α|1〉+ β|0〉)b
10 : |ψ′′〉b ≡ (α|0〉 − β|1〉)b
11 : |ψ′′′〉b ≡ (α|1〉 − β|0〉)b

Alice now communicates her result to Bob using a classical communications link

(e.g. a telephone line). If Alice’s result is 00, then Bob’s state is

|ψ〉b = α|0〉+ β|1〉 = |ψ〉a, i.e., the state that Alice had originally intended to

transfer. Otherwise, Bob can apply a unitary transformation to his qubit which will

transform it into the state |ψ〉b. For instance, if Alice’s result is 01, Bob will apply

the Pauli X transformation. Recalling that |0〉 ≡ ( 1
0 ) and |1〉 ≡ ( 0

1 ), we see that

X|ψ′〉b =
(

0 1

1 0

)[

β

(

1

0

)

+ α

(

0

1

)]

=

(

0 1

1 0

)(

β

α

)

=

(

α

β

)

= |ψ〉b.

3Alice’s purpose in performing the CNOT and Hadamard transformations is to implement, in a

roundabout way, a measurement in the Bell-basis (which we assume she does not have the

technology to perform directly).
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Figure C.1: A quantum circuit for the teleportation of a qubit. The top two lines
represent the parts of the system accessible to Alice; the bottom line is the part of the
system accessible to Bob.

If Alice’s result is 10, then Bob applies a Pauli Z transformation:

Z|ψ′′〉b =
(

1 0

0 −1

)[

α

(

1

0

)

− β

(

0

1

)]

=

(

1 0

0 −1

)(

α

−β

)

=

(

α

β

)

= |ψ〉b.

Finally, if Alice’s result is 11, then the reader can verify that Bob should apply

the combined transformation ZX.
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Appendix D

Separable operations

An open quantum system (e.g., a noisy quantum circuit) is one in which the state

changes of the system of interest, S, are due both to its own internal dynamics and

to its interaction with an external environment or ‘reservoir’, R. Let the initial state

of the overall system be the product state,1 ρ⊗ ωR, with ρ ∈ HS, ωR ∈ HR where

HS,HR are the Hilbert spaces associated with S and R. Then a state change of S

can be expressed as:

ρ 7→ Λρ = trR(Uρ⊗ ωRU
†), (D.1)

where Λ is the dynamical transformation map for S which maps density operators

to density operators, U ≡ e−iHS+Rt/~ is the time evolution operator for the combined

system, and trR is the partial trace over R.

For many purposes it is more convenient to express Λ exclusively in terms of S.

Take |fν〉 to be an orthonormal basis for the state space of the reservoir (which we

assume, without loss of generality, to be pure2), with ωR = |f0〉〈f0| the reservoir’s

initial state. Since the partial trace, over R, of ρ⊗ ωR is given by

trR(ρ⊗ ωR) = 〈fν |ρ⊗ ωR|fν〉, we can rewrite (D.1) as:

ρ→ Λρ =
∑

ν

〈fν |U
[

ρ⊗ |f0〉〈f0|
]

U †|fν〉

=
∑

α

EαρE
†
α, (D.2)

1This is typically a safe assumption to make as the process of state preparation will destroy

any correlations between the system and the environment. See Cuffaro & Myrvold (2012) for a

discussion of the case where this assumption does not hold.
2If the reservoir begins in a mixed state, it is always possible to purify it by means of an extra

system. Cf. §3.2.3
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where Eα ≡ 〈fν |U |f0〉 is an operator on the state space of S, and the Eα, known as

Kraus operators or operation elements, satisfy the completeness relation:

∑

α

E†
αEα = I. (D.3)

Separable operations are those operations that can be decomposed as a product

of Kraus operators as follows:

Λρ =
∑

k

Ak ⊗ BkρA
†
k ⊗ B†

k (D.4)

such that
∑

k A
†
kAk ⊗B†

kBk = 1⊗ 1.

If Alice and Bob perform only LOCC (‘local operations plus classical

communications’) operations on a shared system ρ, then their individual Kraus

operators may be joined together into product Kraus operators; i.e., into the form of

a separable operation. The converse is false (Bennett et al., 1999). Separable

operations are nevertheless a convenient proxy for LOCC operations, as the optimal

implementation, via separable operations, of a given task provides strong bounds for

what can be achieved using LOCC (see, for instance, Rains 2001; Virmani & Plenio

2003).
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Appendix E

Lance Fortnow’s Matrix

Framework

Let us first consider a classical nondeterministic Turing machine. We begin by

defining the transition function, δ, of the machine in terms of a transition matrix,

such that there is an entry in the matrix corresponding to every possible transition

of the machine. We allow matrix entries to contain arbitrary nonnegative rational

numbers. We then define the matrix entry, T (ca, cb), as the probability that the

computer goes to configuration cb from configuration ca in one computational step.

T r(ca, cb), correspondingly, is the probability of getting to cb from ca in r steps; it is

the sum of the probabilities of each computational path of length r leading from ca

to cb, with the restriction that the sum of all possible computational paths of length

r beginning from ca = 1.

For instance, given the matrix in Table E.1, we can determine that

ca cb cc cd ce cf cg ch
ca 0.0 0.2 0.3 0.5 0.0 0.0 0.0 0.0
cb 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5
cc 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0
cd 0.0 0.0 0.0 0.0 0.6 0.4 0.0 0.0
ce 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
cf 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
cg 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
ch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table E.1: A sample state transition matrix. Entries represent probabilities of transition
between states.
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Figure E.1: State diagram representation of the transition matrix in Table E.1. The edge
labels represent the probability of a transition between the states connected by that edge.

T 3(ca, ce) = [T (ca, cb)× T (cb, cd)× T (cd, ce)] +

[T (ca, cc)× T (cc, cd)× T (cd, ce)]

= (0.2× 0.5× 0.6) + (0.3× 0.5× 0.6) = 0.15.

We can now define T t(ca, cf) as the probability of success for our

nondeterministic Turing machine (ca and cf are the initial and accepting states,

respectively) in t time steps. It can be shown that a language L is in the

computational complexity class associated with classical probabilistic computation1

(BPP) if there is a probabilistic matrix T such that, for x ∈ L and 1/2 ≤ k ≤ 1

(typically taken to be 2/3),

T t(ca, cf ) ≥ k,

and for x /∈ L,

T t(ca, cf ) ≤ k,

for polynomial t.

To capture the case of the quantum nondeterministic Turing machine, we omit

1Cf. Appendix A.
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the restriction that the matrix entries be nonnegative, and we redefine the

probability of acceptance as (T t(c1, cA))
2. It can be shown that a language L is in

the computational complexity class associated with quantum computation (BQP) if

there is a matrix T , as just defined, such that, for x ∈ L,

(T t(ca, cf))
2 ≥ k,

and for x /∈ L,

(T t(ca, cf))
2 ≤ k,

for polynomial t.

According to Fortnow, the fundamental difference between quantum and

classical computing is interference. The matrix framework, according to Fortnow,

shows us that, in a quantum computer, ‘bad’ computational paths are associated

with negative matrix entries, allowing other computational paths to occur with

higher probability. Fortnow writes: “The strength of quantum computing lies in the

ability to have bad computation paths eliminate each other thus causing some good

paths to occur with larger probability” (Fortnow, 2003, pp. 605-606).
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Appendix F

Spekkens vs. Quantum

Transformations

In Robert Spekkens’ toy theory (2007), a system consists of a ball that can be in

one of four boxes. A state, in the theory, is an expression of our knowledge of the

location of the ball. For instance, if we know that the ball is in either the first or the

second box, we write 1 ∨ 2. Knowledge is restricted in the Spekkens theory. Aside

from the ‘completely mixed state’, 1 ∨ 2 ∨ 3 ∨ 4, the only other allowable states are

the following six states of maximal knowledge:

≡ 1 ∨ 2 ≡ |0〉 (z+)

≡ 3 ∨ 4 ≡ |1〉 (z−)

≡ 1 ∨ 3 ≡ |+〉 (x+)

≡ 2 ∨ 4 ≡ |−〉 (x−)

≡ 2 ∨ 3 ≡ |+ i〉 (y+)

≡ 1 ∨ 4 ≡ | − i〉 (y−)

Transformations of the Spekkens states are just permutations of the boxes. For

instance, if we subject the state 1 ∨ 2 to the permutation 〈1 → 2 → 3 → 1〉, the
resulting state will be 2∨ 3. Subjecting 3∨ 4 to this permutation will result in 1∨ 4.

We can associate some of the permutations of boxes in Spekkens’ toy theory

with rotations of the Bloch sphere in quantum theory (Myrvold, 2010). In quantum

theory, a 2π/3 rotation of the Bloch sphere about the direction of x̂+ ŷ + ẑ takes

x+ → y+, y+ → z+, and z+ → x+ . In the Spekkens toy theory, this corresponds



126

to the permutation 〈1 → 3 → 2 → 1〉. Let us call this transformation T1. A π/2

rotation of the Bloch sphere about the z-axis, in quantum theory, leaves z+

invariant but takes x+ to y+ and y+ to x−. Let us call this transformation T q
2 . It

cannot be achieved in the Spekkens theory. An alternative, however, is a π/2

rotation about the z-axis followed by a reflection in the xy plane, which

corresponds, in the Spekkens theory to 〈1 → 3 → 2 → 4 → 1〉. Call this
transformation T S

2 . Note that while T q
2 leaves z+ invariant, T S

2 takes z+ to z−. It

can be shown that the sets {T1, T q
2 } and {T1, T S

2 } are sufficient to generate the

Spekkens and quantum groups of transformations, respectively.

Spekkens’s toy theory contains entangled states, but because of the differences in

the allowable transformations between the toy theory and quantum theory, the set

of entangled states that the toy theory contains is not identical to the set of

entangled states contained in quantum theory; specifically, none of the entangled

states in Spekkens’s toy theory yield correlations between outcomes of experiments

that violate the Bell inequalities.
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